欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 126-132.doi: 10.3724/SP.J.1006.2013.00126

• 耕作栽培·生理生化 • 上一篇    下一篇

木薯物质累积特征及其施肥效应研究

黄巧义,唐拴虎*,陈建生,张发宝,解开治,黄旭,蒋瑞萍,李苹   

  1. 广东省农业科学院土壤肥料研究所 / 农业部南方植物营养与肥料重点实验室 / 广东省养分资源循环利用与耕地保育重点实验室,广东广州510640
  • 收稿日期:2012-04-18 修回日期:2012-10-09 出版日期:2013-01-12 网络出版日期:2012-11-14
  • 通讯作者: 唐拴虎, E-mail: tfstshu@yahoo.com.cn
  • 基金资助:

    本研究由国家科技支撑计划项目(2008BADA4B10)和广东省科技计划项目(2009B020311002)资助。

Characteristics of Dry Matter Accumulation and Effect of Fertilizer Application in Cassava

HUANG Qiao-Yi,TANG Shuan-Hu,CHEN Jian-Sheng,ZHANG Fa-Bao,XIE Kai-Zhi,HUANG Xu,JIANG Rui-Ping,LI Ping   

  1. Soil and Fertilizer Institute, Guangdong Academy of Agricultural Sciences / Key Laboratory of Plant Nutrition and Fertilizer in South Region, Ministry of Agriculture / Guangdong Key Laboratory of Nutrient Cycling and Farmland Conservation, Guangzhou 510640, China
  • Received:2012-04-18 Revised:2012-10-09 Published:2013-01-12 Published online:2012-11-14
  • Contact: 唐拴虎, E-mail: tfstshu@yahoo.com.cn

摘要:

以传统品种华南205及新育品种华南5号为材料,通过田间试验,研究了木薯生物量与产量累积规律,探讨了品种改良及施肥措施对木薯物质形成规律的影响。结果表明,不同品种生物量累积动态相似,生长前期生物量累积缓慢,且以地上部分为主,到8月中下旬块根快速生长,物质累积速率迅速提高,累积重心由地上部逐渐转移到地下部; 不同品种间物质累积速率及分配比例有所差异,分枝早且多、茎叶生长旺盛的大株型品种(华南5号)物质累积速率大于小株型品种(华南205),但地上部分生物量比例相对较高,降低了收获指数。氮素是木薯物质形成累积的主要养分限制因子,其次是钾素,磷素影响最小。氮、磷、钾配合施用(1.0∶0.4∶1.0)可显著提高木薯物质累积速率及产量,不同木薯品种物质累积对施肥依赖程度不同,可能与品种的营养需求量、根系发达程度有关。

关键词: 木薯品种, 生物量, 产量, 施肥

Abstract:

The field trials were conducted at two sites nearby the Tropical of Cancer to investigate the influence of variety and fertilization on dry matter formation and accumulation of cassava. Two varieties of newly developed SC5 and conventional SC205 were used with five fertilization treatments including NP (1.0:0.4:0), NK (1:0:1), PK (0:0.4:1.0), NPK (1.0:0.4:1.0) and CK (no fertilizer application). Results indicated that the dry matter accumulation patterns were similar for both varieties. From transplanting to early August, dry matter accumulation mainly allocated in above-ground parts. When tubes started rapidly growing from mid August, the allocation of dry matter accumulation was shifted from above-ground to underground parts, and there was a difference between two varieties in accumulating velocity and distributing proportion of biomass. SC5 had larger crown with many earlier developing branches and leaves compared with SC205, resulting in more biomass accumulation in above-ground parts, thus reducing harvesting index. For fertilizer application, N was the most significant factor to increase dry matter, following K and P. Combining application of NPK (1.0:0.4:1.0) significantly enhanced accumulating velocity of dry matter and tube yields of cassava. There were some difference between two varieties in dry matter accumulation depended on NPK fertilizer application, and probably related to their nutrient demands and root developing level.

Key words: Cassava, Mass cumulating, Yield, Fertilization

[1]Howeler R H. Cassava mineral nutrition and fertilization. In: Hillocks R J, Thresh J M, Belloti A C, eds. Cassava: Biology, Production and Utilization. Wallingford, UK: CAB International, 2002. pp 115–147



[2]El-Sharkawy M A. Cassava Biology and Physiology. Plant Mol Biol, 2004, 56: 481–501



[3]Zhang C, Han W J, Jing X D, Pu G Q, Wang C T. Life cycle economic analysis of fuel ethanol derived from cassava in southwest China. Renew Sustain Energy Rev, 2003, 7: 353–366



[4]Adeniyi O D, Kovo A S, Abdulkareem A S, Chukwudozie C. Ethanol fuel production from cassava as a substitute for gasoline. J Dispers Sci Technol, 2007, 28: 501–504



[5]Leng R B, Wang C T, Zhang C, Dai D, Pu G D. Life cycle inventory and energy analysis of cassava-based fuel ethanol in China. J Cleaner Prod, 2008, 16: 374–384



[6]Olaleye A O, Akinyemi S O S, Tijani-Eniola H, Akinyemi J O, Fapojuwo O E, Oladoja M A, Onsanaya A S. Influence of potassium fertilizer on yield of plantain intercropped with cassava on an oxic paleustalf in southwestern Nigeria. Commun Soil Sci Plant Anal, 2006, 37: 925–938



[7]El-Sharkawy M A, Cadavid L F. Response of cassava to prolonged water stress imposed at different stages of growth. Exp Agric, 2002, 38: 333–350



[8]Alves A A C. Cassava botany and physiology. In: Hillocks R J, Thresh J M, Bellotti A C, eds. Cassava: Biology, Production and Utilization. New York: CABI Publishing, 2002. pp 67–89



[9]Byju G, Anand M H. Differential response of short-and long-duration cassava cultivars to applied mineral nitrogen. J Plant Nutr Soil Sci, 2009, 172: 572–576



[10]Nassar N M A, Ortiz R. Cassava improvement: challenges and impacts. J Agric Sci, 2007, 145: 163–171



[11]Kawano K, Cock J H. Breeding Cassava for underprivileged: institutional, socio-economic and biological factors for success. J Crop Improv, 2005, 14: 197–219



[12]Ceballos H, Iglesias C A, Perez J C, Dixon A G O. Cassava breeding: opportunities and challenges. Plant Mol Biol, 2004, 56: 503–516



[13]Nakviroj C, Paisancharoen K, Boonseng O, Wongwiwatchai C, Roongruang S. Cassava long-term fertility experiments in Thailand. In: Howeler R H ed. Cassava Research and Develepment in Asia: Exploring New Opportunities for an Ancient Crop. Proc 7th Regional Workshop held in Bangkok, Thailand, 2002. pp 212–223



[14]Hy G H, Dang N T, Bien P V, Dung T T, Cach N T, Phien T. Cassava Agronomy Research in Vietnam. In: Howeler R H, ed. Cassava Research and Development in Asia: Exploring New Opportunities for an Ancient Crop. Proc.7th Regional Workshop, held in Bangkok, Thailand, 2002. pp 204–211



[15]Chen G-X(陈冠喜), Li K-M(李开绵), Ye J-Q(叶剑秋), Xu R-L(许瑞丽). Growth and yield traits of 6 cassava varieties. Chin J Trop Agric (热带农业科学), 2009, 29(6): 26–29 (in Chinese with English abstract)



[16]Ye J-Q (叶剑秋). Chinese cassava breeding progress. Chin J Tropl Agric (热带农业科学), 2009, (11): 115–119 (in Chinese)



[17]Lin X(林雄), Li K-M(李开绵), Huang J(黄洁), Xu R-L(许瑞丽), Zhang W-T(张伟特). A breeding report of new cassava variety SC5. Chin J Trop Agric (热带农业科学), 2001, (5): 15–19 (in Chinese)



[18]Cruz J L, Mosquim P R, Pelacanil C R, Araujo W L, Damatta F M. Carbon partitioning and assimilation as affected by nitrogen deficiency in cassava. Photosynthetica, 2003, 41: 201–207



[19]Cruz J L, Mosquim P R, Pelacanil C R, Araujo W L, Damatta F M. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency. Plant Soil, 2003, 257: 417–423



[20]Susan John K, Venugopal V K, Sarawathi P. Critical level of phosphorus and potassium in the cassava growing soils(typical kandiustults) of Kerala. Root Crop, 2004, 30: 37–40



[21]Nguyen H, Schoenau J J, Nguyen D, Van R K, Boehm M. Effect of long- term nitrogen, phosphorus and potassium fertilization on cassava yield and plant nutrient composition in north vietnam. J Plant Nutr, 2002, 25: 425–442



[22]Adekayode F O, Adeola O F. The response of cassava to potassium fertilizer treatments. J Food Agric Environ, 2009, 7: 279–282
[1] 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450.
[2] 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462.
[3] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[4] 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487.
[5] 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515.
[6] 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545.
[7] 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297.
[8] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[9] 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247.
[10] 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016.
[11] 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!