欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 133-141.doi: 10.3724/SP.J.1006.2013.00133

• 耕作栽培·生理生化 • 上一篇    下一篇

干旱处理迫对花生品种叶片保护酶活性和渗透物质含量的影响

张智猛1,戴良香1,*,宋文武1,丁红1,慈敦伟1,康涛1,2,宁堂原3,万书波4,*   

  1. 1山东省花生研究所, 山东青岛 266100; 2新疆农业大学农学院, 新疆乌鲁木齐 830052; 3山东农业大学农学院, 山东泰山 271018; 4山东省农业科学院, 山东济南 250100
  • 收稿日期:2012-04-06 修回日期:2012-07-05 出版日期:2013-01-12 网络出版日期:2012-10-08
  • 通讯作者: 戴良香, E-mail: qinhdao@163.com, 万书波, E-mail: wansb@saas.ac.cn
  • 基金资助:

    本研究由国家“十一五”科技支撑计划项目(2009BADA8B03, 2012BAD11B01), 国家现代农业产业技术体系建设专项(CARS-14), 山东省现代农业产业技术体系创新团队岗位专家(花生)和青岛市科技支撑计划项目(11-2-3-38-nsh)。

Effect of Drought Stresses at Different Growth Stages on Peanut Leaf Protective Enzyme Activities and Osmoregulation Substances Content

ZHANG Zhi-Meng1,DAI Liang-Xiang1,*,SONG Wen-Wu1,DING Hong1,CI Dun-Wei1,KANG Tao1,2,NING Tang-Yuan3,WAN Shu-Bo4,*   

  1. 1 Peanut Research Institute of Shandong Province, Qingdao 266100, China; 2 College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, China; 3 Key Laboratory of Crop Water physiology and Drought-tolerance Germplasm Improvement of Ministry of Agriculture, Shandong Agricultural University, Tai’an 271018, China; 4Shandong Academy of Agricultural Sciences, Jinan 250100, China
  • Received:2012-04-06 Revised:2012-07-05 Published:2013-01-12 Published online:2012-10-08
  • Contact: 戴良香, E-mail: qinhdao@163.com, 万书波, E-mail: wansb@saas.ac.cn

摘要:

以花育22和花育25为试验材料,利用防雨棚池栽人工模拟干旱胁迫逆境试验,调查苗期、花针期和结荚期水分胁迫对花生叶片膜脂过氧化、渗透调节物质含量和保护酶活性的影响。结果表明,干旱处理初期,两品种抗氧化系统和渗透调节物质各成分的反应并不完全一致,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性、可溶性蛋白质(Pr)、游离氨基酸(AA)、脯氨酸含量(Pro)显著升高,但随干旱处理进行,其活性明显降低,保护酶活性与渗透调节物质降低时间基本同步,POD活性对水分胁迫的响应较弱, 丙二醛(MDA)含量显著升高,随干旱处理历时延长,含量降低,其降低时间滞后于保护酶活性,花育22 MDA含量高于花育25;各生育期干旱处理结束后,SODCATPrAAPro含量明显升高,且在水分敏感的花针期升幅均较大;苗期干旱对生育后期保护酶及渗透调节能力的影响较小; SODCAT是花生适应抗旱胁迫的主要抗氧化酶,各渗透调节物质调节能力表现为可溶性蛋白质>可溶性糖>游离氨基酸>脯氨酸;花育25抗旱适应能力较强。

关键词: 花生品种, 水分胁迫, 保护酶活性, MDA, 渗透调节物质

Abstract:

UsingHuayu 22 and Huayu 25 as experimental materials, the physiological and biochemical parameters at seedling stage, flowering-pining stage, and podding stage in peanut leaf were investigated under drought stress in pool cultivation with rainproof. The result showed that, the changes of antioxidant systems and the components of osmoregulation substances of two varieties were not entirely consistent during early drought stress stage. Leaf superoxide dismutase (SOD) and catalase (CAT) activities, soluble protein (Pr), free amino acid (AA) and proline (Pro) contents were significantly increased and then decreased under drought stress. With the prolonged stress, the protective enzyme activities and osmoregulation substances content decreased at the same time. The POD activity and soluble sugar content weakly responded to drought stress. The content of malondialdehyde (MDA) was significantly increased and then decreased with the stress prolonged, but its time lagged behind those of the protective enzyme activities. The MDA content in Huayu 22 leaf was higher than that in Huayu 25. After the drought stress, the activities of SOD, CAT, and soluble protein, free amino acid and proline contents were obviously increased at the end of drought stress at different growth stages. Among those stages, all the parameters were markedly increased at the flowering-pining stage, which is sensitive to water supply. The effects of drought stress on protective enzyme activities and osmoregulation substances of peanuts were weaker at seedling stage than at late growth stages. SOD and CAT were the key antioxidant enzymes to adapt dr ought stress in peanut. The ability of osmoregulation substances contributed to the regulation of drought stress in turn was: soluble sucrose > free amino acid > soluble protein > proline. The drought tolerance of Huayu 25 was higher than that of Huayu 22.

Key words: Peanut varieties, Water stress, Protective enzyme activity, Malondialdehyde, Osmoregulation substances

[1]Shan L(山仑). Development trend of dryland farming technologies. Sci Agric Sin (中国农业科学), 2002, 35(7): 848–855 (in Chinese with English abstract)



[2]Smirnoff N. The role of oxygen in the response of plants to water deficit and desiccation. New Phytol, 1993, 125, 27–58



[3]Li X(李霞), Jiao D-M(焦德茂), Dai C-C(戴传超). The response to photooxidation in leaves of PEPC transgenic rice plant (Oryza sativa L.). Acta Agron Sin (作物学报), 2005, 31(4): 10–15 (in Chinese with English abstract)



[4]Wang J(王娟), Li D-Q(李德全). The accumulation of plant osmoticum and activated oxygen metabolism under stress. Chin Bull Bot (植物学通报), 2001, 18(4): 459–465 (in Chinese with English abstract)



[5]Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot, 2005, 55: 2365–2384



[6]Chen S-F(陈善福), Shu Q-Y(舒庆尧). Biological mechanism of and genetic engineering for drought stress tolerance in plants. Chin Bull Bot (植物学通报), 1999, 16(5): 555–560 (in Chinese with English abstract)



[7]Tang Z-C(汤章城). Proline accumulation in plants under stress conditions and its possible significance. Plant physiol Commun (植物生理学通讯), 1984, (1): 15–21 (in Chinese)



[8]Boyer I S. Plant productivity and environment. Science, 1982. 218: 443–448



[9]Chowdhury R S, Choudhuri M A. Hydrogen peroxide metabolism as index of water stress tolerance in jute. Physiol Plant, 1985, 65: 503–507



[10]Jiang H-F(姜慧芳), Ren X-P(任小平). The effect on SOD activity and protein content in groundnut leaves by drought stress. Acta Agron Sin (作物学报), 2004, 30(2): 169–174 (in Chinese with English abstract)



[11]Zhang Z-M(张智猛), Dai L-X(戴良香), Ding H(丁红), Chen D-X(陈殿绪), Yang W-Q(杨伟强), Song W-W(宋文武), Wan S-B(万书波). Identification and evaluation of drought stress in different peanut cultivars widely released in North China. Acta Agron Sin (作物学报), 2012, 38(3): 495–504 (in Chinese with English abstract)



[12]Luo Y-N(罗瑶年), Yao J-P(姚君平), Yang X-D(杨新道), Song M-T(宋满堂). Study on the critical content of soil moisture in seedling stage and flowering period of peanut. J Peanut Sci (花生科技), 1981, (4): 17–21 (in Chinese)



[13]Yao J-P(姚君平), Luo Y-N(罗瑶年), Yang X-D(杨新道). Study on the critical content of soil moisture in fruiting period and fruiting period of peanut. J Peanut Sci (花生科技), 1981(3): 21–26 (in Chinese)



[14]Amalo K, Chen G X, Asade K. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase implants. Plant Cell Physiol, 1994, 35: 497–504



[15]Xue H-Q(薛慧勤), Sun L-Z(孙兰珍). Effect of water stress on physiological character in different drought resistant peanut varietie. Agric Res Arid Areas (干旱地区农业研究), 1997, 15(4): 82–86 (in Chinese with English abstract)



[16]Xue H-Q(薛慧勤), Sun L-Z(孙兰珍), Gan X-M(甘信民). Study on comprehensive assessment and mechanism of drought resistance in peanut cultivars. Agric Res Arid Areas (干旱地区农业研究), 1999, 17(4): 82–85 (in Chinese with English abstract)



[17]Li J-Q(李俊庆), Rui W-L(芮文利), Qi M-Z(齐敏忠), Zhu H-X(朱红霞), Yang D-C(杨德才). Effect of water stress on morphological development and biology character of different peanut cultivars. Chin J Agrometeorol (中国农业气象), 1996, 7(1): 11–13 (in Chinese with English abstract)



[18]Ni Y-B(倪艳波), Yan M-M(闫苗苗), Zhang J-H(张家浩). Changes of partial physiological indexes of peanut under water stress. J Anhui Agric Sci (安徽农业科学), 2007, 34: 72–75 (in Chinese with English abstract)



[19]Song F-B(宋风斌), Dai J-Y(戴俊英). Effects of water stress on the activities of active oxygen exterminating enzymes of leaf. J Jilin Agric Univ (吉林农业大学学报), 1995, 17(3): 9–15 (in Chinese with English abstract)



[20]Smimoff N. Plant resistance to environmental stress. Curr Opinion Biotechnol, 1998, 9: 214–219



[21]Stewartgr D. Esiccation injury, anhydro biosisand survival. In: Jones H G, Flowers T J, Jones M, eds. Plants under Stress. Gambridge, UK: Cambridge University Press, 1989. pp 115–130



[22]Li H-S(李合生). Experimental Principles and Techniques of Plant Physiology and Biological Chemistry (植物生理生化实验原理和技术). Beijing: Higher Education Press, 2000 (in Chinese)



[23]Zhang X-Z(张宪政), Chen F-Y(陈凤玉), Wang Y-F(王荣富). Plant Physiological Experimental Technology. Shenyang; Liaoning Scienceand Technology Press, 1994 (in Chinese)



[24]Jiang Y, Huang B. Drought and heat stress injury to two cool season turf grasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci, 2001, 41: 436–442



[25]Sun Y-R(孙一荣), Zhu J-J(朱教君), Kang H-Z(康宏樟). Effects of soil water condition on membrane lipid peroxidation and protective enzyme activities of Pinus sylvestrisvar. mongolica seedlings. Chin J Ecol (生态学杂志), 2008, 27(5): 729–734 (in Chinese with English abstract)



[26]Cao H(曹慧), Han Z-H(韩振海), Xu X-F(许雪峰). Membrane lipid peroxidation damage effect of chlorophyll degradation in malus seedlings under water stress. Sei Agric Sin (中国农业科学), 2003, 36(10): 1191–1195 (in Chinese with English abstract)



[27]Chen S-Y(陈少裕). Membrane-lipid peroxidation and plant stress. Chin Bull Bot (植物学通报), 1989, 6(4): 211–217 (in Chinese with English abstract)



[28]Cabuslay G S, Ito O, Alejar A A. Physiological evaluation of responses of rice to water deficit. Plant Sci, 2002, 163, 815–827



[29]Li G-M(李广敏), Tang L-S(唐连顺), Shang Z-Q(商振清), Chi S-M(池书敏). Effect of osmotic stress on protective enzyme systems in maize seedlings and their relationship to drought resistance. J Agric Univ Hebei (河北农业大学学报), 1994, 17(2): 1–5 (in Chines with English abstract)



[30]Akcay U C, Ercan O, Kavas M, Yildiz L, Yilmaz C, Oktem H A, Yucel M. Drought-induced oxidative damage and antioxidant responses in peanut (Arachis hypogaea L.) seedlings. Plant Growth Regul, 2010, 61: 21–28



[31]Cai K-Z(蔡昆争), Wu X-Z(吴学祝), Luo S-M(骆世明). Effects of water stress on osmolytes at different growth stages in rice leaves and roots. J Plant Ecol (植物生态学报), 2008, 32(2): 491–500 (in Chinese with English abstract)

[1] DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346.
[2] 刘畅,李仕金,王轲,叶兴国,林志珊. 簇毛麦6VS特异转录序列P21461P33259的获得及其分子标记在鉴定小麦-簇毛麦抗白粉病育种材料中的应用[J]. 作物学报, 2017, 43(07): 983-992.
[3] 孙子淇,张新友,徐静,张忠信,刘华,严玫,董文召,黄冰艳,韩锁义,汤丰收,刘志勇. 河南省审定花生品种的指纹图谱构建[J]. 作物学报, 2016, 42(10): 1448-1461.
[4] 叶德练,齐瑞娟,管大海,李建民,张明才,李召虎. 免耕冬小麦田土壤微生物特征和土壤酶活性对水分调控的响应[J]. 作物学报, 2015, 41(08): 1212-1219.
[5] 李长宁,谢金兰,王维赞,梁强,李毅杰,董文斌,刘晓燕,杨丽涛,李杨瑞. 水分胁迫下甘蔗差异表达基因筛选及激素相关基因分析[J]. 作物学报, 2015, 41(07): 1127-1135.
[6] 厉广辉,万勇善,刘风珍,张昆. 不同抗旱性花生品种根系形态及生理特性[J]. 作物学报, 2014, 40(03): 531-541.
[7] 金秀锋,王宪国,任万杰,张晓科,谢惠民,范锋贵. 一个水分胁迫应答蛋白与小麦抗旱性的关系及其基因的定位[J]. 作物学报, 2014, 40(02): 198-204.
[8] 王卫锋,杨晓青,张岁岐,山仑. 剪根与水分胁迫对小麦单根和细胞导水率及TaPIP基因表达的影响[J]. 作物学报, 2013, 39(08): 1462-1468.
[9] 冯晓敏,张永清. 水分胁迫对糜子植株苗期生长和光合特性的影响[J]. 作物学报, 2012, 38(08): 1513-1521.
[10] 李宗泰, 陈二影, 张美玲, 赵庆龙, 许晓龙, 姬红, 宋宪亮, 孙学振. 施钾方式对棉花叶片抗氧化酶活性、产量及钾肥利用效率的影响[J]. 作物学报, 2012, 38(03): 487-494.
[11] 韩仲志, 赵友刚. 利用花生荚果图像特征识别品种与检验种子[J]. 作物学报, 2012, 38(03): 535-540.
[12] 张智猛, 戴良香, 丁红, 陈殿绪, 杨伟强, 宋文武, 万书波. 中国北方主栽花生品种抗旱性鉴定与评价[J]. 作物学报, 2012, 38(03): 495-504.
[13] 郭彦军, 倪郁, 郭芸江, 韩龙, 唐华, 玉永雄. 水热胁迫对紫花苜蓿叶表皮蜡质组分及生理指标的影响[J]. 作物学报, 2011, 37(05): 911-917.
[14] 孙园园, 孙永健, 王明田, 李旭毅, 郭翔, 胡蓉, 马均. 种子引发对水分胁迫下水稻发芽及幼苗生理性状的影响[J]. 作物学报, 2010, 36(11): 1931-1940.
[15] 吴妍,张岁岐,刘小芳,山仑. 水分胁迫及复水条件下外源Ca2+对玉米幼苗根系水力导度及生长的影响[J]. 作物学报, 2010, 36(06): 1044-1049.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!