作物学报 ›› 2013, Vol. 39 ›› Issue (01): 126-132.doi: 10.3724/SP.J.1006.2013.00126
黄巧义,唐拴虎*,陈建生,张发宝,解开治,黄旭,蒋瑞萍,李苹
HUANG Qiao-Yi,TANG Shuan-Hu,CHEN Jian-Sheng,ZHANG Fa-Bao,XIE Kai-Zhi,HUANG Xu,JIANG Rui-Ping,LI Ping
摘要:
以传统品种华南205及新育品种华南5号为材料,通过田间试验,研究了木薯生物量与产量累积规律,探讨了品种改良及施肥措施对木薯物质形成规律的影响。结果表明,不同品种生物量累积动态相似,生长前期生物量累积缓慢,且以地上部分为主,到8月中下旬块根快速生长,物质累积速率迅速提高,累积重心由地上部逐渐转移到地下部; 不同品种间物质累积速率及分配比例有所差异,分枝早且多、茎叶生长旺盛的大株型品种(华南5号)物质累积速率大于小株型品种(华南205),但地上部分生物量比例相对较高,降低了收获指数。氮素是木薯物质形成累积的主要养分限制因子,其次是钾素,磷素影响最小。氮、磷、钾配合施用(1.0∶0.4∶1.0)可显著提高木薯物质累积速率及产量,不同木薯品种物质累积对施肥依赖程度不同,可能与品种的营养需求量、根系发达程度有关。
[1]Howeler R H. Cassava mineral nutrition and fertilization. In: Hillocks R J, Thresh J M, Belloti A C, eds. Cassava: Biology, Production and Utilization. Wallingford, UK: CAB International, 2002. pp 115–147[2]El-Sharkawy M A. Cassava Biology and Physiology. Plant Mol Biol, 2004, 56: 481–501[3]Zhang C, Han W J, Jing X D, Pu G Q, Wang C T. Life cycle economic analysis of fuel ethanol derived from cassava in southwest China. Renew Sustain Energy Rev, 2003, 7: 353–366[4]Adeniyi O D, Kovo A S, Abdulkareem A S, Chukwudozie C. Ethanol fuel production from cassava as a substitute for gasoline. J Dispers Sci Technol, 2007, 28: 501–504[5]Leng R B, Wang C T, Zhang C, Dai D, Pu G D. Life cycle inventory and energy analysis of cassava-based fuel ethanol in China. J Cleaner Prod, 2008, 16: 374–384[6]Olaleye A O, Akinyemi S O S, Tijani-Eniola H, Akinyemi J O, Fapojuwo O E, Oladoja M A, Onsanaya A S. Influence of potassium fertilizer on yield of plantain intercropped with cassava on an oxic paleustalf in southwestern Nigeria. Commun Soil Sci Plant Anal, 2006, 37: 925–938[7]El-Sharkawy M A, Cadavid L F. Response of cassava to prolonged water stress imposed at different stages of growth. Exp Agric, 2002, 38: 333–350[8]Alves A A C. Cassava botany and physiology. In: Hillocks R J, Thresh J M, Bellotti A C, eds. Cassava: Biology, Production and Utilization. New York: CABI Publishing, 2002. pp 67–89[9]Byju G, Anand M H. Differential response of short-and long-duration cassava cultivars to applied mineral nitrogen. J Plant Nutr Soil Sci, 2009, 172: 572–576[10]Nassar N M A, Ortiz R. Cassava improvement: challenges and impacts. J Agric Sci, 2007, 145: 163–171[11]Kawano K, Cock J H. Breeding Cassava for underprivileged: institutional, socio-economic and biological factors for success. J Crop Improv, 2005, 14: 197–219[12]Ceballos H, Iglesias C A, Perez J C, Dixon A G O. Cassava breeding: opportunities and challenges. Plant Mol Biol, 2004, 56: 503–516[13]Nakviroj C, Paisancharoen K, Boonseng O, Wongwiwatchai C, Roongruang S. Cassava long-term fertility experiments in Thailand. In: Howeler R H ed. Cassava Research and Develepment in Asia: Exploring New Opportunities for an Ancient Crop. Proc 7th Regional Workshop held in Bangkok, Thailand, 2002. pp 212–223[14]Hy G H, Dang N T, Bien P V, Dung T T, Cach N T, Phien T. Cassava Agronomy Research in Vietnam. In: Howeler R H, ed. Cassava Research and Development in Asia: Exploring New Opportunities for an Ancient Crop. Proc.7th Regional Workshop, held in Bangkok, Thailand, 2002. pp 204–211[15]Chen G-X(陈冠喜), Li K-M(李开绵), Ye J-Q(叶剑秋), Xu R-L(许瑞丽). Growth and yield traits of 6 cassava varieties. Chin J Trop Agric (热带农业科学), 2009, 29(6): 26–29 (in Chinese with English abstract)[16]Ye J-Q (叶剑秋). Chinese cassava breeding progress. Chin J Tropl Agric (热带农业科学), 2009, (11): 115–119 (in Chinese)[17]Lin X(林雄), Li K-M(李开绵), Huang J(黄洁), Xu R-L(许瑞丽), Zhang W-T(张伟特). A breeding report of new cassava variety SC5. Chin J Trop Agric (热带农业科学), 2001, (5): 15–19 (in Chinese)[18]Cruz J L, Mosquim P R, Pelacanil C R, Araujo W L, Damatta F M. Carbon partitioning and assimilation as affected by nitrogen deficiency in cassava. Photosynthetica, 2003, 41: 201–207[19]Cruz J L, Mosquim P R, Pelacanil C R, Araujo W L, Damatta F M. Photosynthesis impairment in cassava leaves in response to nitrogen deficiency. Plant Soil, 2003, 257: 417–423 [20]Susan John K, Venugopal V K, Sarawathi P. Critical level of phosphorus and potassium in the cassava growing soils(typical kandiustults) of Kerala. Root Crop, 2004, 30: 37–40[21]Nguyen H, Schoenau J J, Nguyen D, Van R K, Boehm M. Effect of long- term nitrogen, phosphorus and potassium fertilization on cassava yield and plant nutrient composition in north vietnam. J Plant Nutr, 2002, 25: 425–442[22]Adekayode F O, Adeola O F. The response of cassava to potassium fertilizer treatments. J Food Agric Environ, 2009, 7: 279–282 |
[1] | 王丹, 周宝元, 马玮, 葛均筑, 丁在松, 李从锋, 赵明. 长江中游双季玉米种植模式周年气候资源分配与利用特征[J]. 作物学报, 2022, 48(6): 1437-1450. |
[2] | 王旺年, 葛均筑, 杨海昌, 阴法庭, 黄太利, 蒯婕, 王晶, 汪波, 周广生, 傅廷栋. 大田作物在不同盐碱地的饲料价值评价[J]. 作物学报, 2022, 48(6): 1451-1462. |
[3] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[4] | 杨欢, 周颖, 陈平, 杜青, 郑本川, 蒲甜, 温晶, 杨文钰, 雍太文. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476-1487. |
[5] | 陈静, 任佰朝, 赵斌, 刘鹏, 张吉旺. 叶面喷施甜菜碱对不同播期夏玉米产量形成及抗氧化能力的调控[J]. 作物学报, 2022, 48(6): 1502-1515. |
[6] | 李祎君, 吕厚荃. 气候变化背景下农业气象灾害对东北地区春玉米产量影响[J]. 作物学报, 2022, 48(6): 1537-1545. |
[7] | 石艳艳, 马志花, 吴春花, 周永瑾, 李荣. 垄作沟覆地膜对旱地马铃薯光合特性及产量形成的影响[J]. 作物学报, 2022, 48(5): 1288-1297. |
[8] | 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234. |
[9] | 闫晓宇, 郭文君, 秦都林, 王双磊, 聂军军, 赵娜, 祁杰, 宋宪亮, 毛丽丽, 孙学振. 滨海盐碱地棉花秸秆还田和深松对棉花干物质积累、养分吸收及产量的影响[J]. 作物学报, 2022, 48(5): 1235-1247. |
[10] | 柯健, 陈婷婷, 吴周, 朱铁忠, 孙杰, 何海兵, 尤翠翠, 朱德泉, 武立权. 沿江双季稻北缘区晚稻适宜品种类型及高产群体特征[J]. 作物学报, 2022, 48(4): 1005-1016. |
[11] | 李瑞东, 尹阳阳, 宋雯雯, 武婷婷, 孙石, 韩天富, 徐彩龙, 吴存祥, 胡水秀. 增密对不同分枝类型大豆品种同化物积累和产量的影响[J]. 作物学报, 2022, 48(4): 942-951. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 杜浩, 程玉汉, 李泰, 侯智红, 黎永力, 南海洋, 董利东, 刘宝辉, 程群. 利用Ln位点进行分子设计提高大豆单荚粒数[J]. 作物学报, 2022, 48(3): 565-571. |
[14] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[15] | 袁嘉琦, 刘艳阳, 许轲, 李国辉, 陈天晔, 周虎毅, 郭保卫, 霍中洋, 戴其根, 张洪程. 氮密处理提高迟播栽粳稻资源利用和产量[J]. 作物学报, 2022, 48(3): 667-681. |
|