欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 118-125.doi: 10.3724/SP.J.1006.2013.00118

• 耕作栽培·生理生化 • 上一篇    下一篇

以半冬性甘蓝型油菜为亲本增强春性甘蓝型油菜杂种优势

姚艳梅,柳海东,徐亮,杜德志*   

  1. 青海省农林科学院春油菜研究所 / 国家油菜改良青海分中心 / 青海省高原作物种质资源创新与利用重点实验室培育基地, 青海西宁 810016
  • 收稿日期:2012-04-27 修回日期:2012-10-09 出版日期:2013-01-12 网络出版日期:2012-11-14
  • 通讯作者: 杜德志, E-mail: qhurape@126.com, 273545641@qq.com, Tel: 0971-5366520
  • 基金资助:

    本研究由国家现代农业产业技术体系建设专项(CARS-13)和国家高技术研究发展计划(863计划)项目(2011AA10A10404)资助。

Enhancing the Heterosis of Spring Rapeseed Varieties (Brassica napus L.) by Using Semi-Winter Rapeseed Varieties as Parents

AO Yan-Mei,LIU Hai-Dong,XU Liang,DU De-Zhi*   

  1. Spring Rapeseed Research Institute, Qinghai Academy of Agriculture and Forestry, Qinghai Sub-center of National Rapeseed Improvement, Qinghai provincial Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Xining 810016, China
  • Received:2012-04-27 Revised:2012-10-09 Published:2013-01-12 Published online:2012-11-14
  • Contact: 杜德志, E-mail: qhurape@126.com, 273545641@qq.com, Tel: 0971-5366520

摘要:

以春性恢复系与半冬性品种()杂交后选育的16份新春性恢复系及其4个亲本系[2个半冬性甘蓝型油菜品种()2个春性甘蓝型恢复系]2个春性甘蓝型不育系为材料, 利用SSRSRAPAFLP分子标记技术分析材料间的遗传差异, 同时利用以上2个春性不育系分别与12个新春性恢复系和1个春性亲本恢复系Ag-5进行NCII双列杂交, 测定其杂种优势及杂种表现16份新恢复系中除931和帐23, 其余的14份新恢复系与2个不育系的遗传距离均大于其春性亲本恢复系与相应不育系的遗传距离, 说明导入半冬性品种遗传成分能扩大春性恢复系与不育系间的遗传差异; 配制的26个杂交组合中, 其双亲中不育系所对应保持系单株产量为高亲值的组合有15, 其中13个组合单株产量超亲优势都强于所对应不育系与亲本恢复系Ag-5所配杂交组合, 说明导入半冬性品种遗传成分可增强甘蓝型春油菜杂种优势; 12个新恢复系分别与2个不育系所配24个组合中18个组合的单株产量都分别超过所对应不育系与亲本恢复系Ag-5所配杂交组合, 说明导入半冬性品种遗传成分能提高甘蓝型春油菜杂种的产量; 新恢复系与2个不育系杂交后代的抗病性均强于其亲本恢复系与相应不育系杂交后代的抗病性, 说明导入半冬性品种遗传成分能提高春性甘蓝型油菜杂交种抗菌核病的能力。研究结果表明, 半冬性甘蓝型油菜品种可能为春油菜杂交育种提供有价值的遗传资源。

关键词: 春性油菜, 不育系, 恢复系, 分子标记, 杂种优势, 菌核病

Abstract:

Several B. napus varieties (lines) including two semi-winter rapeseed varieties, two spring restorer lines, two spring male-sterile lines and 16 spring restorer lines (derived from the spring restorer lines and semi-winter rapeseed varieties) were analyzed using SSR, SRAP and AFLP. Twenty-six combinations were produced according to the North Carolina mating design (NCII) by hand-pollinating 12 new restorer lines and one parental restorer line (Ag-5) with two spring male-sterile lines. The hybrid performance values were also determined. Among the 16 restorer lines, except for 931 and Zhang 23, the genetic distances were greater between the new restorer lines and two male-sterile lines than between the corresponding parental restorer line (Ag-5) and the two male-sterile lines, showing that introgressing semi-winter varieties into spring restorer lines could increase the genetic distance between spring restorer lines and spring male-sterile lines. The yield per plant for the maintainer lines of 15 combinations, which corresponded to the sterile lines showed high-parent values in 26 combinations, and 13 combinations showed stronger high-parent heterosis of yield per plant compared to combinations produced by the corresponding male-sterile and parental restorer lines (CMSL×Ag-5), suggesting that introgressing semi-winter varieties into spring restorer lines could enhance the heterosis of spring B. napus varieties Eighteen hybrids among the 24 combinations showed higher yield per plant compared to the combinations of CMSL× Ag-5, indicating introgressing semi-winter varieties into spring restorer lines might improve the spring B. napus hybrids yield. The results also showed that introgressing semi-winter varieties into spring restorer lines could improve the resistance to Sclerotinia sclerotiorum of spring B. napus hybrids. This study indicates that semi-winter B. napus rapeseed may be a valuable source of germplasm for spring hybrid breeding.

Key words: Spring rapeseed, CMS lines, Restorer lines, Molecular markers, Heterosis, Sclerotinia sclerotiorum

[1]Ma C-Z(马朝芝), Fu T-D(傅廷栋), Tuevesson S, Gertsson B. Genetic diversity of chinese and Swedish rapeseed (Brassica napus L.) analysed by inter-simple sequence repeats (ISSRs). Sci Agrci Sin (中国农业科学), 2003, 36(11): 1403–1408 (in Chinese with English abstract)



[2]Charter Y M, Robertson A, Wilkinson M J, Ramsay G. PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. oleifera) using 5'-anchored simple sequence repeat (SSR) primers. Theor Appl Genet, 1995, 92: 442–447



[3]Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.) with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet, 2006, 113: 49–54



[4]Du D-Z(杜德志), Nie P(聂平), Xu L(徐亮), Luo Y-X(罗玉秀), Yao Y-M(姚艳梅), Zhou H-W(周红伟), Zhang X-M(张晓梅). Rapeseed heterosis of different ecotypes in Qinghai province. Chin J Oil Crop Sci (中国油料作物学报), 2010, 32(2): 180–186 (in Chinese with English abstract)



[5]Yao Y-M(姚艳梅). Comparative of several Different traits in different ecotypes of Brassica napus L. J Qinghai Univ (Nat Sci) (青海大学学报•自然科学版), 2011, 29(6): 2–4 (in Chinese with English abstract)



[6]Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Theor Appl Genet, 1990, 12: 13–15



[7]Tautz D. Hypervariability of simple sequence as general source for polymorphic DNA markers. Nucl Acids Res, 1989, 12: 6463–6467



[8]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and genetagging in Brassica. Theor Appl Genet, 2001, 103: 455–461



[9]Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Freijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res, 1995, 23: 4407–4414



[10]Zhao J W, Meng J L. Genetic analysis of loci associated with partial resistance to sclerotinia sclerotiorum in rapeseed (Brassica napus L.). TAG Theor Appl Genet, 2003, 106: 759–764



[11]Luo K(罗宽), Zhou B-W(周必文). Disease and Prevention of Rapeseed (油菜病害及其治理). Beijing: China Business Press, 1994 (in Chinese)



[12]Ran Y(冉毅), Wen C-J(文成敬), Niu Y-Z(牛应泽). Comparison ofmethods for identification of resistance to Scleroti sclerotiorum and screening of resistant materials in rapeseed. J Plant Prot (植物保护学报), 2007, 34(6): 601–606 (in Chinese with English abstract)



[13]Nei M, Li W. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5256–5273



[14]Sneath P H A, Sokal R R. Numerical Taxonomy. San Francisco: WH Freeman, 1973



[15]Rohlf F J. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, vertion 1.80. New York: Exeter Publication, 1990.



[16]Zhang T-Z(张天真). Pandect of Crop Breeding (作物育种学总论). Beijing: China Agriculture Press, 2003. pp 146–149 (in Chinese)



[17]Tang Q-Y(唐启义), Feng M-G(冯明光). Utility Statistics Analysis and Data Processing System (实用统计分析及其DPS数据处理系统). Beijing: Science Press, 2002. pp 333–339, 367–373 (in Chinese)



[18]U N. Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot, 1935, 7: 389–452



[19]Liu H. Genetics and Breeding in Rapeseed. Beijing: China Agricultural University Press, 2000. pp 20–23, 26–45



[20]Sun V G. The evaluation of taxonomic characters of cultivated Brassica with a key to species and variances. 1. The characters. Bull Torrey Bot, 1946, 73: 244–281



[21]Denford K E, Vaughan J G. A comparative study of certain seed isoenzymes in the ten chromosome complex of Brassica campestris and its allies. Ann Bot, 1977, 41: 411–418



[22]Qian W, Liu R, Meng J. Genetic effects on biomass yield in interspecific hybrids between Brassica napus and Brassica rapa. Euphytica, 2003, 134: 9–15



[23]Song K M, Osborn T C, Williams P H. Brassica taxonomy based on nuclear restriction fragment length polymorphism (RFLP) 2. Preliminary analysis of subspecies within B. rapa. Theor Appl Genet, 1988, 76: 593–600



[24]Zhao J-Y(赵坚义), Becker H C. Genetic variation in Chinese and European oilseed rape (B. napus) and turnip rape (B. campestris) analysis with isozymes. Acta Agron Sin (作物学报), 1998, 24(2): 213–220 (in Chinese with English abstract)



[25]Zhao J, Wang X, Deng B, Lou P, Wu J, Sun R, Xu Z, Vromans J, Koornneef M, Bonnema G. Genetic relationship within Brassica rapa as inferred from AFLP fingerprints. Theor Appl Genet, 2005, 110: 1301–1314



[26]Udall JA, Quijada PA, Polewicz H, Vogelzang R D, Osborn T C. Phenotypic effects of introducing unadapted germplasm into a spring canola hybrid. Crop Sci, 2004, 44: 1990–1996



[27]Quijada P A, Udall JA, Polewicz H, Vogelzang R D, Osborn T C. Phenotypic effects of introgressing French winter germplasm into hybrid spring canola (Brassica napus L.). Crop Sci, 2004, 44: 1982–1989



[28]Butruille D V, Guries R P, Osborn T C. Increasing yield of spring oilseed rape hybrids (Brassica napus L.) through introgression of winter germplasm. Crop Sci, 1999, 39: 1491–1496



[29]Fei W-X(费维新), Li Q-S(李强生), Chen F-X(陈凤祥), Zhang Y(张跃), Wu X-J(吴新杰), Hou S-M(侯树敏), Jiang Y-F(江莹芬), Hu B-C(胡宝成). Preliminary report on the resistance to Sclerotinia sclerotiorum of 14 varieties of Brassica napus L. Chin Sci Agric Bull (中国农学通报), 2007, 23(1): 254–257 (in Chinese with English abstract)



[30]Liu C-Q(刘澄清), Du D-Z(杜德志), Huang Y-J(黄有菊), Wang C-H(王春华). Study on the resistant to disease and genetic effects of varieties of Brassica napus L. Sci Agrci Sin (中国农业科学), 1991, 24(3): 43–49 (in Chinese with English abstract)

[1] 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811.
[2] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[3] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[4] 周杰强, 张桂莲, 邓化冰, 明兴权, 雷斌, 李凡, 唐文帮. 水稻小粒不育系新组合卓两优141混播制种优势分析[J]. 作物学报, 2022, 48(2): 320-331.
[5] 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521.
[6] 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227.
[7] 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196.
[8] 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982.
[9] 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586.
[10] 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223.
[11] 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284.
[12] 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172.
[13] 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090.
[14] 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93.
[15] 向丽媛,徐凯,苏静,吴超,袁雄,郑兴飞,刁英,胡中立,李兰芝. 基于通路分析剖析水稻农艺性状配合力和杂种优势[J]. 作物学报, 2019, 45(9): 1319-1326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!