作物学报 ›› 2013, Vol. 39 ›› Issue (01): 110-117.doi: 10.3724/SP.J.1006.2013.00110
倪郁1,3,王婧1,宋超1,夏瑞娥1,孙正圆1,郭彦军2,李加纳1,3,*
NI Yu1,3,WANG Jing1,SONG Chao1,XIA Rui-E1,SUN Zheng-Yuan1,GUO Yan-Jun2,LI Jia-Na1,3,*
摘要:
处于植物地上部分最外层的表皮蜡质被认为是植物抵御病原物入侵的第一道屏障,但表皮蜡质是否及如何参与油菜菌核病防御机制还不清楚。本试验选用2个抗病性不同的油菜品种中双9号(抗性品种)和渝油19 (感病品种),对水杨酸(SA)处理后的油菜幼苗接种核盘菌,分析油菜病情指数、叶表皮蜡质含量和晶体结构特征、抗氧化酶活性的变化规律。结果表明,SA处理使中双9号病情指数显著下降,渝油19无显著变化,SA诱导了油菜抗性品种中双9号对菌核病的抗性。接种核盘菌后,中双9号PAL活性显著增加,而渝油19显著下降; SA处理植株叶片PAL和POD活性显著高于单纯接种植株。渝油19苗期叶表皮蜡质总量显著高于中双9号。SA诱导中双9号蜡质总量及组分含量增加,柱状晶体结构减少,片状结构增加,扩大了蜡质层覆盖叶表面积。渝油19在SA处理后蜡质含量无显著变化,晶体结构发生了与中双9号相似的变化,但渝油19蜡质晶体熔融后覆盖叶表面积小于中双9号。综合分析认为防御酶活性及叶表皮蜡质共同参与SA诱导中双9号抗性增强的过程。
[1]Jenk M A, Joly R J, Peters P J, Rich P J, Axtell J D, Ashworth E N. Chemically induced cuticle mutation affecting epidermal conductance to water vapor and disease susceptibility in Sorghum bicolor (L.) Moench. Plant Physiol, 1994, 105: 1239–1245[2]Ficke A, Gadoury D M, Godfrey D, Dry I B. Host barriers and responses to Uncinula necator in developing grape berries. Phytopathol, 2004, 94: 438–445[3]Russin J S, Guo B Z, Tubajika K M, Brown L, Cleveland T E, Widstorm N W. Comparison of kernel wax from corn genotypes resistant or susceptible to Aspergillus flavus. Biochem Cell Biol, 1997, 87: 529–533[4]Zinsou V, Wydra K, Ahohuendo B, Schreiber L. Leaf waxes of cassava (Manihot esculenta Crantz) in relation to ecozone and resistance to Xanthomonas blight. Euphytica, 2006, 149: 189–198[5]Chen Z-Y(陈志谊), Wang Y-H(王玉环), Yin S-Z(殷尚智). A study on the mechanism of resistance to sheath blight in rice. Sci Agric Sin (中国农业科学), 1992, 25(4): 41–46 (in Chinese with English abstract)[6]Ashraf M, Zafar Z U. Some physiological characteristics in resistant and susceptible cotton cultivars infected with cotton leaf curl virus. Biol Plant, 1999, 42: 615–620[7]Li H-Y(李海英), Liu Y-G(刘亚光), Yang Q-K(杨庆凯). Studies on the structural resistance to Cercospora sojina Hara in soybean leaves. Chin J Oil Crop Sci (中国油料作物学报), 2002, 24(2): 74–76 (in Chinese with English abstract)[8]Kang L-G(康立功), Qi F-K(齐凤坤), Xu X-Y(许向阳), Li J-F(李景富). Relationship between tomato leaf wax and cutin layers with infection by helminthosporium carposaprum. China Veget (中国蔬菜), 2010, (18): 47–50 (in Chinese with English abstract)[9]Luo K(罗宽), Zhou B-W (周必文). Rape Disease and Its Governance (油菜病害及治理). Beijing: China Business Press, 1994 (in Chinese)[10]Yang B, Rahman M H, Liang Y, Shah S, Kav N N V. Characterization of defense signaling pathways of Brassica napus and Brassica carinata in response to Sclerotinia sclerotiorum challenge. Plant Mol Biol Rep, 2010, 28: 253–263[11]Guo X M, Stotz H U. Defense against Sclerotinia sclerotiorum in Arabidopsis is dependent on jasmonic acid, salicylic acid, and ethylene signaling. Mol Plant Microbe Interact, 2007, 20: 1384–1395[12]Zhang W, Yang X F, Qiu D W, Guo L H, Zeng H M, Mao J J, Gao Q F. Pea T1-induced systemic acquired resistance in tobacco follows salicylic acid-dependent pathway. Mol Biol Rep, 2011, 38: 2549–2556[13]Kacprzak P, Macioszek V K, Kononowicz A K. Induced systemic resistance (ISR) in the protection of plants against pathogenic fungi. Postepy Biol Komorki, 2011, 38: 129–142[14]Garbay B, Tautu M T, Costaglioli P. Low level of pathogenesis-related protein 1 mRNA expression in 15-day-old Arabidopsis cer6-2 and cer2 eceriferum mutants. Plant Sci, 2007, 172: 299–305[15]Cajustea J F, González-Candelasa L, Veyrat A, García-Breijo F J, Reig-Arminana J, Lafuentea M T. Epicuticular wax content and morphology as related to ethylene and storage performance of ‘Navelate’ orange fruit. Postharvest Biol Technol, 2010, 55: 29–35[16]Zhang X-P(臧宪朋), Xu Y-P(徐幼平), Cai X-Z(蔡新忠). Establishment of an inoculation technique system for Sclerotinia sclerotiorum based on mycelial suspensions. J Zhejiang Univ (浙江大学学报), 2010, 36(4): 381–386 (in Chinese with English abstract)[17]Rosler J, Krekel F, Amrhein N, Schmid J. Maize phenylalanine ammonia-lyase has tyrosine ammonia-lyase activity. Plant Physiol, 1997, 113: 175–179[18]Olmos E, Piqueras A, Martinez-Solano J R, Hellin E. The subcellular localization of peroxidase and the implication of oxidative stress in hyperhydrated leave of regenerated carnation plants. Plant Sci, 1997, 130: 97–105[19]Sun N, Song K. Effect of nonthermal treatment on the molecular properties of mushroom polyphenoloxidase. Food Chem Toxicol, 2003, 68: 1639–1643[20]Kim K S, Park S H, Jenks M A. Changes in leaf cuticular waxes of sesame (Sesamum indicum L.) plants exposed to water deficit. J Plant Physiol, 2007, 164: 1134–1143[21]Mauch-Mani B, Slusarenko A J. Production of salicylic acid precursors is a major function of phenylalanine ammonialyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell, 1996, 8: 203–212[22]Sreedhara H S, Nandini B A, Shetty S A, Shetty H S. Peroxidase activities in the pathogenesis of Sclerospora graminicola in pearl millet seedlings. Int J Trop Plant Dis, 1995, 13: 19–32[23]Dietrich R A, Delaney T P, Uknes S J, Ward E R, Ryals J A, Dangl J L. Arabidopsis mutants simulating disease resistance response. Cell, 1994, 77: 565–577[24]Bowling S A, Clarke J D, Liu Y, Klessig D F, Dong X. The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell, 1997, 9: 1573–1584[25]Rate D N, Cuenca J V, Bowman G R, Guttman D S, Greenberg J T. The gain-of-function Arabidopsis acd6 mutant reveals novel regulation and function of the salicylic acid signaling pathway in controlling cell death, defenses, and cell growth. Plant Cell, 1999, 11: 1695–1708[26]Cao H, Bowling S A, Gordon A S, Dong X. Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired resistance. Plant Cell, 1994, 6: 1583–1592[27]Shah J, Kachroo P, Klessig D F. The Arabidopsis ssi1 mutation restores pathogenesis-related gene expression in npr1 plants and renders defense in gene expression salicylic acid dependent. Plant Cell, 1999, 11: 191–206[28]Rubiales D, Niks R E. Avoidance of rust infection by some genotypes of Hordeum chilensedue to their relative inability to induce the formation of appressoria. Physiol Mol Plant Pathol, 1996, 49: 89–101[29]Tsuba M, Katagiri G, Takeuchi Y, Yamaoka N. Chemical factors of the leaf surface involved in the morphogenesis of Blumeria graminis. Physiol Mol Plant Pathol, 2002, 60: 51–57[30]Furtado G Q, Alves S A M, Godoy C V, Salatino M L F, Massola N S. Influence of light and leaf epicuticular wax layer on phakopsora pachyrhizi infection in soybean. Trop Plant Pathol, 2009, 34: 306–312[31]Shepherd T, Griffiths D W. The effects of stress on plant cuticular waxes. New Phytol, 2006, 171: 469–499[32]Li J-J(李婧婧), Huang J-H(黄俊华), Xie S-C(谢树成). Plant wax and its response to environmental conditions: an overview. Acta Ecolo Sin (生态学报), 2011, 31(2): 565–574 (in Chinese with English abstract)[33]Koch K, Hartmann K D, Schreiber L, Barthlott W, Neinhuis C. Influences of air humidity during the cultivation of plants on wax chemical composition, morphology and leaf surface wettability. Environ Exp Bot, 2006, 56: 1–9[34]Guo Y-J(郭彦军), Ni Y(倪郁), Guo Y-J(郭芸江), Han L(韩龙), Tang H(唐华). Effects of air humidity and soil water deficit on characteristics of leaf cuticular waxes in alfalfa (Medicago staiva).Acta Ecolo Sin (生态学报), 2011, 31(18): 5273–5280 (in Chinese with English abstract)[35]Smith J A, Blanchette R A, Burnes T A, Gillman J H, David A J. Epicuticular wax and white pine blister rust resistance in resistant and susceptible selections of eastern white pine (pinus strobus). Phytopathol, 2006, 96: 171–177[36]Raffaele S, Vailleau F, Leger A, Joubes J, Miersch O, Huard C, Blee E, Mongrand S, Domergue F, Roby D. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell, 2008, 20: 752–767[37]José J R, Alexander Y. Surface lipids and plant defenses. Plant Physiol Bioch, 2009, 47: 540–549 |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 秦璐, 韩配配, 常海滨, 顾炽明, 黄威, 李银水, 廖祥生, 谢立华, 廖星. 甘蓝型油菜耐低氮种质筛选及绿肥应用潜力评价[J]. 作物学报, 2022, 48(6): 1488-1501. |
[3] | 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080. |
[4] | 黄伟, 高国应, 吴金锋, 刘丽莉, 张大为, 周定港, 成洪涛, 张凯旋, 周美亮, 李莓, 严明理. 芥菜型油菜BjA09.TT8和BjB08.TT8基因调节类黄酮的合成[J]. 作物学报, 2022, 48(5): 1169-1180. |
[5] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[6] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[7] | 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850. |
[8] | 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564. |
[9] | 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607. |
[10] | 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634. |
[11] | 王瑞, 陈雪, 郭青青, 周蓉, 陈蕾, 李加纳. 甘蓝型油菜白花基因InDel连锁标记开发[J]. 作物学报, 2022, 48(3): 759-769. |
[12] | 赵改会, 李书宇, 詹杰鹏, 李晏斌, 师家勤, 王新发, 王汉中. 甘蓝型油菜角果数突变体基因的定位及候选基因分析[J]. 作物学报, 2022, 48(1): 27-39. |
[13] | 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62. |
[14] | 娄洪祥, 姬建利, 蒯婕, 汪波, 徐亮, 李真, 刘芳, 黄威, 刘暑艳, 尹羽丰, 王晶, 周广生. 种植密度对油菜正反交组合产量与倒伏相关性状的影响[J]. 作物学报, 2021, 47(9): 1724-1740. |
[15] | 张建, 谢田晋, 尉晓楠, 王宗铠, 刘崇涛, 周广生, 汪波. 无人机多角度成像方式的饲料油菜生物量估算研究[J]. 作物学报, 2021, 47(9): 1816-1823. |
|