作物学报 ›› 2013, Vol. 39 ›› Issue (01): 118-125.doi: 10.3724/SP.J.1006.2013.00118
姚艳梅,柳海东,徐亮,杜德志*
AO Yan-Mei,LIU Hai-Dong,XU Liang,DU De-Zhi*
摘要:
[1]Ma C-Z(马朝芝), Fu T-D(傅廷栋), Tuevesson S, Gertsson B. Genetic diversity of chinese and Swedish rapeseed (Brassica napus L.) analysed by inter-simple sequence repeats (ISSRs). Sci Agrci Sin (中国农业科学), 2003, 36(11): 1403–1408 (in Chinese with English abstract)[2]Charter Y M, Robertson A, Wilkinson M J, Ramsay G. PCR analysis of oilseed rape cultivars (Brassica napus L. ssp. oleifera) using 5'-anchored simple sequence repeat (SSR) primers. Theor Appl Genet, 1995, 92: 442–447[3]Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B. napus L.) with emphasis on the evolution of Chinese rapeseed. Theor Appl Genet, 2006, 113: 49–54[4]Du D-Z(杜德志), Nie P(聂平), Xu L(徐亮), Luo Y-X(罗玉秀), Yao Y-M(姚艳梅), Zhou H-W(周红伟), Zhang X-M(张晓梅). Rapeseed heterosis of different ecotypes in Qinghai province. Chin J Oil Crop Sci (中国油料作物学报), 2010, 32(2): 180–186 (in Chinese with English abstract)[5]Yao Y-M(姚艳梅). Comparative of several Different traits in different ecotypes of Brassica napus L. J Qinghai Univ (Nat Sci) (青海大学学报•自然科学版), 2011, 29(6): 2–4 (in Chinese with English abstract)[6]Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue. Theor Appl Genet, 1990, 12: 13–15[7]Tautz D. Hypervariability of simple sequence as general source for polymorphic DNA markers. Nucl Acids Res, 1989, 12: 6463–6467[8]Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and genetagging in Brassica. Theor Appl Genet, 2001, 103: 455–461[9]Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Freijters A, Pot J, Peleman J, Kuiper M, Zabeau M. AFLP: a new technique for DNA fingerprinting. Nucl Acids Res, 1995, 23: 4407–4414[10]Zhao J W, Meng J L. Genetic analysis of loci associated with partial resistance to sclerotinia sclerotiorum in rapeseed (Brassica napus L.). TAG Theor Appl Genet, 2003, 106: 759–764[11]Luo K(罗宽), Zhou B-W(周必文). Disease and Prevention of Rapeseed (油菜病害及其治理). Beijing: China Business Press, 1994 (in Chinese)[12]Ran Y(冉毅), Wen C-J(文成敬), Niu Y-Z(牛应泽). Comparison ofmethods for identification of resistance to Scleroti sclerotiorum and screening of resistant materials in rapeseed. J Plant Prot (植物保护学报), 2007, 34(6): 601–606 (in Chinese with English abstract)[13]Nei M, Li W. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA, 1979, 76: 5256–5273[14]Sneath P H A, Sokal R R. Numerical Taxonomy. San Francisco: WH Freeman, 1973[15]Rohlf F J. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, vertion 1.80. New York: Exeter Publication, 1990.[16]Zhang T-Z(张天真). Pandect of Crop Breeding (作物育种学总论). Beijing: China Agriculture Press, 2003. pp 146–149 (in Chinese) [17]Tang Q-Y(唐启义), Feng M-G(冯明光). Utility Statistics Analysis and Data Processing System (实用统计分析及其DPS数据处理系统). Beijing: Science Press, 2002. pp 333–339, 367–373 (in Chinese)[18]U N. Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot, 1935, 7: 389–452[19]Liu H. Genetics and Breeding in Rapeseed. Beijing: China Agricultural University Press, 2000. pp 20–23, 26–45[20]Sun V G. The evaluation of taxonomic characters of cultivated Brassica with a key to species and variances. 1. The characters. Bull Torrey Bot, 1946, 73: 244–281[21]Denford K E, Vaughan J G. A comparative study of certain seed isoenzymes in the ten chromosome complex of Brassica campestris and its allies. Ann Bot, 1977, 41: 411–418[22]Qian W, Liu R, Meng J. Genetic effects on biomass yield in interspecific hybrids between Brassica napus and Brassica rapa. Euphytica, 2003, 134: 9–15[23]Song K M, Osborn T C, Williams P H. Brassica taxonomy based on nuclear restriction fragment length polymorphism (RFLP) 2. Preliminary analysis of subspecies within B. rapa. Theor Appl Genet, 1988, 76: 593–600[24]Zhao J-Y(赵坚义), Becker H C. Genetic variation in Chinese and European oilseed rape (B. napus) and turnip rape (B. campestris) analysis with isozymes. Acta Agron Sin (作物学报), 1998, 24(2): 213–220 (in Chinese with English abstract)[25]Zhao J, Wang X, Deng B, Lou P, Wu J, Sun R, Xu Z, Vromans J, Koornneef M, Bonnema G. Genetic relationship within Brassica rapa as inferred from AFLP fingerprints. Theor Appl Genet, 2005, 110: 1301–1314[26]Udall JA, Quijada PA, Polewicz H, Vogelzang R D, Osborn T C. Phenotypic effects of introducing unadapted germplasm into a spring canola hybrid. Crop Sci, 2004, 44: 1990–1996[27]Quijada P A, Udall JA, Polewicz H, Vogelzang R D, Osborn T C. Phenotypic effects of introgressing French winter germplasm into hybrid spring canola (Brassica napus L.). Crop Sci, 2004, 44: 1982–1989[28]Butruille D V, Guries R P, Osborn T C. Increasing yield of spring oilseed rape hybrids (Brassica napus L.) through introgression of winter germplasm. Crop Sci, 1999, 39: 1491–1496[29]Fei W-X(费维新), Li Q-S(李强生), Chen F-X(陈凤祥), Zhang Y(张跃), Wu X-J(吴新杰), Hou S-M(侯树敏), Jiang Y-F(江莹芬), Hu B-C(胡宝成). Preliminary report on the resistance to Sclerotinia sclerotiorum of 14 varieties of Brassica napus L. Chin Sci Agric Bull (中国农学通报), 2007, 23(1): 254–257 (in Chinese with English abstract)[30]Liu C-Q(刘澄清), Du D-Z(杜德志), Huang Y-J(黄有菊), Wang C-H(王春华). Study on the resistant to disease and genetic effects of varieties of Brassica napus L. Sci Agrci Sin (中国农业科学), 1991, 24(3): 43–49 (in Chinese with English abstract) |
[1] | 石育钦, 孙梦丹, 陈帆, 成洪涛, 胡学志, 付丽, 胡琼, 梅德圣, 李超. 通过CRISPR/Cas9技术突变BnMLO6基因提高甘蓝型油菜的抗病性[J]. 作物学报, 2022, 48(4): 801-811. |
[2] | 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589. |
[3] | 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758. |
[4] | 周杰强, 张桂莲, 邓化冰, 明兴权, 雷斌, 李凡, 唐文帮. 水稻小粒不育系新组合卓两优141混播制种优势分析[J]. 作物学报, 2022, 48(2): 320-331. |
[5] | 王音, 冯志威, 葛川, 赵佳佳, 乔玲, 武棒棒, 闫素仙, 郑军, 郑兴卫. 普通小麦-六倍体中间偃麦草易位系的抗条锈鉴定及应用评估[J]. 作物学报, 2021, 47(8): 1511-1521. |
[6] | 江建华, 张武汉, 党小景, 荣慧, 叶琴, 胡长敏, 张瑛, 何强, 王德正. 水稻核不育系柱头性状的主基因+多基因遗传分析[J]. 作物学报, 2021, 47(7): 1215-1227. |
[7] | 韩玉洲, 张勇, 杨阳, 顾正中, 吴科, 谢全, 孔忠新, 贾海燕, 马正强. 小麦株高QTL Qph.nau-5B的效应评价[J]. 作物学报, 2021, 47(6): 1188-1196. |
[8] | 贺军与, 尹顺琼, 陈云琼, 熊静蕾, 王卫斌, 周鸿斌, 陈梅, 王梦玥, 陈升位. 小麦矮秆突变体的鉴定及其突变性状的关联分析[J]. 作物学报, 2021, 47(5): 974-982. |
[9] | 王恒波, 陈姝琦, 郭晋隆, 阙友雄. 甘蔗抗黄锈病G1标记的分子检测及候选抗病基因WAK的分析[J]. 作物学报, 2021, 47(4): 577-586. |
[10] | 李倩, Nadil Shah, 周元委, 侯照科, 龚建芳, 刘珏, 尚政伟, 张磊, 战宗祥, 常海滨, 傅廷栋, 朴钟云, 张椿雨. 抗根肿病甘蓝型油菜新品种华油杂62R的选育[J]. 作物学报, 2021, 47(2): 210-223. |
[11] | 张雪翠, 孙素丽, 卢为国, 李海朝, 贾岩岩, 段灿星, 朱振东. 河南大豆新品系抗大豆疫霉根腐病基因鉴定[J]. 作物学报, 2021, 47(2): 275-284. |
[12] | 郭青青, 周蓉, 陈雪, 陈蕾, 李加纳, 王瑞. 甘蓝型油菜桔红花显性基因候选区域的NGS定位及InDel标记开发[J]. 作物学报, 2021, 47(11): 2163-2172. |
[13] | 黄义文, 代旭冉, 刘宏伟, 杨丽, 买春艳, 于立强, 于广军, 张宏军, 李洪杰, 周阳. 小麦多酚氧化酶基因Ppo-A1和Ppo-D1位点等位变异与穗发芽抗性的关系[J]. 作物学报, 2021, 47(11): 2080-2090. |
[14] | 郭艳春, 张力岚, 陈思远, 祁建民, 方平平, 陶爱芬, 张列梅, 张立武. 黄麻应用核心种质的DNA分子身份证构建[J]. 作物学报, 2021, 47(1): 80-93. |
[15] | 向丽媛,徐凯,苏静,吴超,袁雄,郑兴飞,刁英,胡中立,李兰芝. 基于通路分析剖析水稻农艺性状配合力和杂种优势[J]. 作物学报, 2019, 45(9): 1319-1326. |
|