作物学报 ›› 2013, Vol. 39 ›› Issue (01): 133-141.doi: 10.3724/SP.J.1006.2013.00133
张智猛1,戴良香1,*,宋文武1,丁红1,慈敦伟1,康涛1,2,宁堂原3,万书波4,*
ZHANG Zhi-Meng1,DAI Liang-Xiang1,*,SONG Wen-Wu1,DING Hong1,CI Dun-Wei1,KANG Tao1,2,NING Tang-Yuan3,WAN Shu-Bo4,*
摘要:
以花育22和花育25为试验材料,利用防雨棚池栽人工模拟干旱胁迫逆境试验,调查苗期、花针期和结荚期水分胁迫对花生叶片膜脂过氧化、渗透调节物质含量和保护酶活性的影响。结果表明,干旱处理初期,两品种抗氧化系统和渗透调节物质各成分的反应并不完全一致,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性、可溶性蛋白质(Pr)、游离氨基酸(AA)、脯氨酸含量(Pro)显著升高,但随干旱处理进行,其活性明显降低,保护酶活性与渗透调节物质降低时间基本同步,POD活性对水分胁迫的响应较弱, 丙二醛(MDA)含量显著升高,随干旱处理历时延长,含量降低,其降低时间滞后于保护酶活性,花育22 MDA含量高于花育25;各生育期干旱处理结束后,SOD、CAT、Pr、AA、Pro含量明显升高,且在水分敏感的花针期升幅均较大;苗期干旱对生育后期保护酶及渗透调节能力的影响较小; SOD和CAT是花生适应抗旱胁迫的主要抗氧化酶,各渗透调节物质调节能力表现为可溶性蛋白质>可溶性糖>游离氨基酸>脯氨酸;花育25抗旱适应能力较强。
[1]Shan L(山仑). Development trend of dryland farming technologies. Sci Agric Sin (中国农业科学), 2002, 35(7): 848–855 (in Chinese with English abstract)[2]Smirnoff N. The role of oxygen in the response of plants to water deficit and desiccation. New Phytol, 1993, 125, 27–58[3]Li X(李霞), Jiao D-M(焦德茂), Dai C-C(戴传超). The response to photooxidation in leaves of PEPC transgenic rice plant (Oryza sativa L.). Acta Agron Sin (作物学报), 2005, 31(4): 10–15 (in Chinese with English abstract)[4]Wang J(王娟), Li D-Q(李德全). The accumulation of plant osmoticum and activated oxygen metabolism under stress. Chin Bull Bot (植物学通报), 2001, 18(4): 459–465 (in Chinese with English abstract)[5]Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot, 2005, 55: 2365–2384[6]Chen S-F(陈善福), Shu Q-Y(舒庆尧). Biological mechanism of and genetic engineering for drought stress tolerance in plants. Chin Bull Bot (植物学通报), 1999, 16(5): 555–560 (in Chinese with English abstract)[7]Tang Z-C(汤章城). Proline accumulation in plants under stress conditions and its possible significance. Plant physiol Commun (植物生理学通讯), 1984, (1): 15–21 (in Chinese)[8]Boyer I S. Plant productivity and environment. Science, 1982. 218: 443–448[9]Chowdhury R S, Choudhuri M A. Hydrogen peroxide metabolism as index of water stress tolerance in jute. Physiol Plant, 1985, 65: 503–507[10]Jiang H-F(姜慧芳), Ren X-P(任小平). The effect on SOD activity and protein content in groundnut leaves by drought stress. Acta Agron Sin (作物学报), 2004, 30(2): 169–174 (in Chinese with English abstract)[11]Zhang Z-M(张智猛), Dai L-X(戴良香), Ding H(丁红), Chen D-X(陈殿绪), Yang W-Q(杨伟强), Song W-W(宋文武), Wan S-B(万书波). Identification and evaluation of drought stress in different peanut cultivars widely released in North China. Acta Agron Sin (作物学报), 2012, 38(3): 495–504 (in Chinese with English abstract)[12]Luo Y-N(罗瑶年), Yao J-P(姚君平), Yang X-D(杨新道), Song M-T(宋满堂). Study on the critical content of soil moisture in seedling stage and flowering period of peanut. J Peanut Sci (花生科技), 1981, (4): 17–21 (in Chinese)[13]Yao J-P(姚君平), Luo Y-N(罗瑶年), Yang X-D(杨新道). Study on the critical content of soil moisture in fruiting period and fruiting period of peanut. J Peanut Sci (花生科技), 1981(3): 21–26 (in Chinese)[14]Amalo K, Chen G X, Asade K. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase implants. Plant Cell Physiol, 1994, 35: 497–504[15]Xue H-Q(薛慧勤), Sun L-Z(孙兰珍). Effect of water stress on physiological character in different drought resistant peanut varietie. Agric Res Arid Areas (干旱地区农业研究), 1997, 15(4): 82–86 (in Chinese with English abstract)[16]Xue H-Q(薛慧勤), Sun L-Z(孙兰珍), Gan X-M(甘信民). Study on comprehensive assessment and mechanism of drought resistance in peanut cultivars. Agric Res Arid Areas (干旱地区农业研究), 1999, 17(4): 82–85 (in Chinese with English abstract)[17]Li J-Q(李俊庆), Rui W-L(芮文利), Qi M-Z(齐敏忠), Zhu H-X(朱红霞), Yang D-C(杨德才). Effect of water stress on morphological development and biology character of different peanut cultivars. Chin J Agrometeorol (中国农业气象), 1996, 7(1): 11–13 (in Chinese with English abstract)[18]Ni Y-B(倪艳波), Yan M-M(闫苗苗), Zhang J-H(张家浩). Changes of partial physiological indexes of peanut under water stress. J Anhui Agric Sci (安徽农业科学), 2007, 34: 72–75 (in Chinese with English abstract)[19]Song F-B(宋风斌), Dai J-Y(戴俊英). Effects of water stress on the activities of active oxygen exterminating enzymes of leaf. J Jilin Agric Univ (吉林农业大学学报), 1995, 17(3): 9–15 (in Chinese with English abstract)[20]Smimoff N. Plant resistance to environmental stress. Curr Opinion Biotechnol, 1998, 9: 214–219[21]Stewartgr D. Esiccation injury, anhydro biosisand survival. In: Jones H G, Flowers T J, Jones M, eds. Plants under Stress. Gambridge, UK: Cambridge University Press, 1989. pp 115–130[22]Li H-S(李合生). Experimental Principles and Techniques of Plant Physiology and Biological Chemistry (植物生理生化实验原理和技术). Beijing: Higher Education Press, 2000 (in Chinese)[23]Zhang X-Z(张宪政), Chen F-Y(陈凤玉), Wang Y-F(王荣富). Plant Physiological Experimental Technology. Shenyang; Liaoning Scienceand Technology Press, 1994 (in Chinese)[24]Jiang Y, Huang B. Drought and heat stress injury to two cool season turf grasses in relation to antioxidant metabolism and lipid peroxidation. Crop Sci, 2001, 41: 436–442[25]Sun Y-R(孙一荣), Zhu J-J(朱教君), Kang H-Z(康宏樟). Effects of soil water condition on membrane lipid peroxidation and protective enzyme activities of Pinus sylvestrisvar. mongolica seedlings. Chin J Ecol (生态学杂志), 2008, 27(5): 729–734 (in Chinese with English abstract)[26]Cao H(曹慧), Han Z-H(韩振海), Xu X-F(许雪峰). Membrane lipid peroxidation damage effect of chlorophyll degradation in malus seedlings under water stress. Sei Agric Sin (中国农业科学), 2003, 36(10): 1191–1195 (in Chinese with English abstract)[27]Chen S-Y(陈少裕). Membrane-lipid peroxidation and plant stress. Chin Bull Bot (植物学通报), 1989, 6(4): 211–217 (in Chinese with English abstract)[28]Cabuslay G S, Ito O, Alejar A A. Physiological evaluation of responses of rice to water deficit. Plant Sci, 2002, 163, 815–827[29]Li G-M(李广敏), Tang L-S(唐连顺), Shang Z-Q(商振清), Chi S-M(池书敏). Effect of osmotic stress on protective enzyme systems in maize seedlings and their relationship to drought resistance. J Agric Univ Hebei (河北农业大学学报), 1994, 17(2): 1–5 (in Chines with English abstract)[30]Akcay U C, Ercan O, Kavas M, Yildiz L, Yilmaz C, Oktem H A, Yucel M. Drought-induced oxidative damage and antioxidant responses in peanut (Arachis hypogaea L.) seedlings. Plant Growth Regul, 2010, 61: 21–28[31]Cai K-Z(蔡昆争), Wu X-Z(吴学祝), Luo S-M(骆世明). Effects of water stress on osmolytes at different growth stages in rice leaves and roots. J Plant Ecol (植物生态学报), 2008, 32(2): 491–500 (in Chinese with English abstract) |
[1] | DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346. |
[2] | 刘畅,李仕金,王轲,叶兴国,林志珊. 簇毛麦6VS特异转录序列P21461及P33259的获得及其分子标记在鉴定小麦-簇毛麦抗白粉病育种材料中的应用[J]. 作物学报, 2017, 43(07): 983-992. |
[3] | 孙子淇,张新友,徐静,张忠信,刘华,严玫,董文召,黄冰艳,韩锁义,汤丰收,刘志勇. 河南省审定花生品种的指纹图谱构建[J]. 作物学报, 2016, 42(10): 1448-1461. |
[4] | 叶德练,齐瑞娟,管大海,李建民,张明才,李召虎. 免耕冬小麦田土壤微生物特征和土壤酶活性对水分调控的响应[J]. 作物学报, 2015, 41(08): 1212-1219. |
[5] | 李长宁,谢金兰,王维赞,梁强,李毅杰,董文斌,刘晓燕,杨丽涛,李杨瑞. 水分胁迫下甘蔗差异表达基因筛选及激素相关基因分析[J]. 作物学报, 2015, 41(07): 1127-1135. |
[6] | 厉广辉,万勇善,刘风珍,张昆. 不同抗旱性花生品种根系形态及生理特性[J]. 作物学报, 2014, 40(03): 531-541. |
[7] | 金秀锋,王宪国,任万杰,张晓科,谢惠民,范锋贵. 一个水分胁迫应答蛋白与小麦抗旱性的关系及其基因的定位[J]. 作物学报, 2014, 40(02): 198-204. |
[8] | 王卫锋,杨晓青,张岁岐,山仑. 剪根与水分胁迫对小麦单根和细胞导水率及TaPIP基因表达的影响[J]. 作物学报, 2013, 39(08): 1462-1468. |
[9] | 冯晓敏,张永清. 水分胁迫对糜子植株苗期生长和光合特性的影响[J]. 作物学报, 2012, 38(08): 1513-1521. |
[10] | 李宗泰, 陈二影, 张美玲, 赵庆龙, 许晓龙, 姬红, 宋宪亮, 孙学振. 施钾方式对棉花叶片抗氧化酶活性、产量及钾肥利用效率的影响[J]. 作物学报, 2012, 38(03): 487-494. |
[11] | 韩仲志, 赵友刚. 利用花生荚果图像特征识别品种与检验种子[J]. 作物学报, 2012, 38(03): 535-540. |
[12] | 张智猛, 戴良香, 丁红, 陈殿绪, 杨伟强, 宋文武, 万书波. 中国北方主栽花生品种抗旱性鉴定与评价[J]. 作物学报, 2012, 38(03): 495-504. |
[13] | 郭彦军, 倪郁, 郭芸江, 韩龙, 唐华, 玉永雄. 水热胁迫对紫花苜蓿叶表皮蜡质组分及生理指标的影响[J]. 作物学报, 2011, 37(05): 911-917. |
[14] | 孙园园, 孙永健, 王明田, 李旭毅, 郭翔, 胡蓉, 马均. 种子引发对水分胁迫下水稻发芽及幼苗生理性状的影响[J]. 作物学报, 2010, 36(11): 1931-1940. |
[15] | 吴妍,张岁岐,刘小芳,山仑. 水分胁迫及复水条件下外源Ca2+对玉米幼苗根系水力导度及生长的影响[J]. 作物学报, 2010, 36(06): 1044-1049. |
|