欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (06): 1044-1049.doi: 10.3724/SP.J.1006.2010.01044

• 研究简报 • 上一篇    下一篇

水分胁迫及复水条件下外源Ca2+对玉米幼苗根系水力导度及生长的影响

吴妍1,张岁岐1,2,*,刘小芳2,山仑1,2   

  1. 1 西北农林科技大学 / 黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌 712100;2 中国科学院水利部水土保持研究所,陕西杨凌 712100
  • 收稿日期:2009-12-15 修回日期:2010-03-19 出版日期:2010-06-12 网络出版日期:2010-04-14
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2009CB118604),国家高技术研究发展计划(863计划)项目(2007AA100202),国家自然科学基金项目(30971714)和教育部新世纪优秀人才支持计划项目资助。

Effect of Calcium on Maize Seedling Root Hydraulic Conductivity and Growth under Water Stress and Rehydration Conditions

 WU Yan1,ZHANG Sui-Qi1,2,*,LIU Xiao-Fang2,SHAN Lun1,2   

  1. 1State Key Laboratory of Soil Erosion and Dryland farming of the Loess Plateau/Northwest A&F University,Yangling 712100,China;2Institute of Soil and Water Conservation,Chinese Academy of Sciences and Ministry of Water Resources,Yangling 712100,China
  • Received:2009-12-15 Revised:2010-03-19 Published:2010-06-12 Published online:2010-04-14

摘要:

利用10%PEG-6000模拟–0.2 MPa的水分胁迫,研究了外源Ca2+(1/2 Hoagland营养液中添加10 mmol L-1 CaCl2)对水分胁迫7 d后及复水2 d,玉米幼苗整株根系水力导度(Lpr)、根系生长及叶水势w)的影响。结果表明,正常水分条件下,外源Ca2+处理降低了Lpr,但对叶水势无影响;水分胁迫条件下,外源Ca2+显著提高了Lpr、叶水势,减缓了水分胁迫对植物的伤害;复水1 d,两种钙水平下Lp均无明显恢复,但Ca2+处理的Lpr显著高于对照,而叶水势无显著差异且均能恢复至正常供水时的水平;复水2 dCa2+处理的Lpr即能恢复至正常供水时的水平,对照仅恢复为正常供水时的59.06%。进一步用HgCl2检测表明,正常水分条件下外源Ca2+对水通道蛋白(AQP)活性没有影响;而水分胁迫下,外源Ca2+提高了AQP活性,对照AQP活性下降,说明水分胁迫时外源Ca2+促进了水分跨膜途径运输;复水2 d,外源Ca2+处理AQP活性恢复至正常供水时的水平,对照AQP活性未能恢复。另外,外源Ca2+处理减缓了水分胁迫对植物生长发育的抑制作用,促进了复水时侧根发育,增加根系吸水面积,为植株迅速恢复供水提供了形态学基础,增加了复水后的补偿效应。

关键词: 水分胁迫, 复水, Ca2+, AQP, 根系水力导度

Abstract:

The effects of extra calcium (additions of 10 mmol L-1 CaCl2 into half-strength Hoagland solution) on maize (Zea mays L.) seedling root hydraulic conductivity (Lpr), morphology and leaf water potential (ψw) were investigated under water stress, which was simulated by 10% PEG-6000 with osmotic potential (ψs) value of -0.2 MPa for seven days, and subsequent two days rehydration. Whole root hydraulic conductivity (Lpr) and leaf water potential (ψw) were determined by pressure chamber. After these treatments, it could be seen that water stress reduced Lpr, which was restored when calcium was added to the solution for growing the water-stressed plants. In addition, the Lpr recovered to the level of the control after re-watering at high Ca2+ level, but the recovery of Lpr was only 59.06% at regular Ca2+ level. HgCl2 (50 μmol L-1) treatment caused a sharp decline in Lpr, which was almost restored by treatment with 5 mmol L-1 β-mercaptoethanol. The reduction of Lpr by Hg2+ was 53.20% and 74.55% at regular and high calcium levels, respectively under water stress condition, and 62.1% under normal condition. The results suggest that Ca2+ increased the passage of water through the cell membrane of roots by increasing the activity of Hg-sensitive AQP under water stress. The percentage of reduction by Hg2+ was decreased to the control level two days after re-watering in CaCl2 treated plants. The leaf water potential was declined significantly under water stress, particularly at regular calcium level with respect to the decrease of Lpr. However, ψw recovered rapidly onw day after re-watering. Furthermore, water stress had a detrimental effect on the root growth. The addition of calcium, especially at low water potential, increased the root surface area and primary root diameter, and it promoted primary root enlongation and lateral root development. Compared with the controls, the growth of Ca treated plants was recovered gradually with the prolonging of rehydration. Therefore, these results indicated that the extra calcium, with respect to root growth and water uptake, mitigates the negative effect of water stress and enhances the compensatory effects of rehydration.

Key words: Water stress, Rehydration, Calcium, AQP, Root hydraulic conductivity

[1]Maurel C, Javot H, Lauvergeat V, Gerbeau P, Tournaire C, Santoni V, Heyes J. Molecular physiology of aquaporins in plants. Molecular Mechanisms of Water Transport across Biological Membranes, 2002, pp 105-148
[2]Javot H, Maurel C. The role of aquaporins in root water uptake
[J].Ann Bot
[3]Sharp R E. Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress
[J].Plant Cell Environ
[4]Steudle E. Water uptake by roots: effects of water deficit
[J].J Exp Bot
[5]Henzler T, Steudle E. Reversible closing of water channels in Chara internodes provides evidence for a composite transport model of the plasma membrane
[J].J Exp Bot
[6]Tyerman S D, Niemietz C M, Bramley H. Plant aquaporins: multifunctional water and solute channels with expanding roles
[J].Plant Cell Environ
[7]Steudle E, Tyerman S D. Determination of permeability coefficients, reflection coefficients, and hydraulic conductivity of Chara corallina using the pressure probe: Effects of solute concentrations
[J].J Membr Biol
[8]Vandeleur R K, Mayo G, Shelden M C, Gilliham M, Kaiser B N, Tyerman S D. The role of plasma membrane intrinsic protein aquaporins in water transport through roots: diurnal and drought stress responses reveal different strategies between isohydric and anisohydric cultivars of grapevine
[J].Plant Physiol
[9]Maurel C, Verdoucq L, Luu D T, Santoni V. Plant aquaporins: membrane channels with multiple integrated functions
[J].Annu Rev Plant Biol
[10]Kirkby E A, Pilbeam D J. Calcium as a plant nutrient
[J].Plant Cell Environ
[11]Hanson J B. The functions of calcium in plant nutrition. Adv Plant Nutr, 1984, 1: 149-208
[12]White P J, Broadley M R. Calcium in plants
[J].Ann Bot
[13]Knight H, Trewavas A J, Knight M R. Calcium signalling in Arabidopsis thaliana responding to drought and salinity
[J].Plant J
[14]Lecourieux D, Ranjeva R, Pugin A. Calcium in plant defence-signalling pathways
[J].New Phytologist
[15]Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response
[J].Plant Physiol
[16]Johansson I, Larsson C, Ek B, Kjellbom P. The major integral proteins of spinach leaf plasma membranes are putative aquaporins and are phosphorylated in response to Ca2+ and apoplastic water potential. Plant Cell, 1996, 8: 1181-1191
[17]Verdoucq L, Grondin A, Maurel C. Structure-function analysis of plant aquaporin AtPIP2; 1 gating by divalent cations and protons
[J].Biochem J
[18]Ionenko I F, Anisimov A V, Karimova F G. Water transport in maize roots under the influence of mercuric chloride and water stress: a role of water channels
[J].Biol Plant
[19]Azaizeh H, Gunse B, Steudle E. Effects of NaCl and CaCl2 on water transport across root cells of maize (Zea mays L.) seedlings. Plant Physiol, 1992, 99: 886-894
[20]Carvajal M. Does calcium ameliorate the negative effect of NaCl on melon root water transport by regulating aquaporin activity
[J].New Phytologist
[21]Cabañero F J, Martínez V, Carvajal M. Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determines calcium uptake
[J].Plant Sci
[22]Martínez-Ballesta M C, Cabanero F, Olmos E, Periago P M, Maurel C, Carvajal M. Two different effects of calcium on aquaporins in salinity-stressed pepper plants. Planta, 2008, 228: 15-25
[23]Liu B B, Deng X P, Zhang S Q. Root pressure probe can be used to measure the hydraulic properties of whole root systems of corn (Zea mays L.). Botanical Studies, 2009, 50: 303-310
[24]Liu W-G(刘晚苟), Shan L(山仑), Deng X-P(邓西平). Probe the method of measuring root system hydraulic conductivity using pressure chamber. Acta Bot Boreali-Occident Sin (西北植物学报), 2001, 21(4): 761-765 (in Chinese with English abstract)
[25]Preston G M, Jung J S, Guggino W B, Agre P. The mercury-sensitive residue at cysteine 189 in the CHIP28 water channel. J Biol Chem, 1993, 268: 17
[26]Lawlor D W, Cornic G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants
[J].Plant Cell Environ
[27]Legge R L, Thompson J E, Baker J E, Lieberman M. The effect of calcium on the fluidity and phase properties of microsomal membranes isolated from postclimacteric Golden Delicious apples. Plant Cell Physiol, 1982, 23: 161-169
[28]Yang G-P(杨根平), Gao X-Y(高向阳), Jing J-H(荆家海). Calcium can improve photosynthesis of Soybean leaves under water stress. Acta Agron Sin (作物学报), 1995, 21(6): 711-716 (in Chinese with English abstract)
[29]Abdel-Basset R. Calcium channels and membrane disorders induced by drought stress in Vicia faba plants supplemented with calcium
[J].Acta Physiologiae Plantarum
[30]Huang G-C(黄国存), Cui S-P(崔四平), Ma C-H(马春红), Zhou H-X(周洪显). Changes of CaM in seeding of Wheat and relation to SOD activity under water stress. Plant Physiol Commun (植物生理学通讯), 1995, 31(005): 335-337 (in Chinese)
[31]Okazaki Y, Tazawa M. Calcium ion and turgor regulation in plant cells
[J].J Membr Biol
[32]Nakamura Y, Tanaka K, Ohta E, Sakata M. Protective effect of external Ca2+ on elongation and the intracellular concentration of K+ in intact mung bean roots under high NaCl stress. Plant Cell Physiol, 1990, 31: 815
[33]Cabañero F J, Martinez-Ballesta M C, Teruel J A, Carvajal M. New evidence about the relationship between water channel activity and calcium in salinity-stressed pepper plants. Plant Cell Physiol, 2006, 47: 224-233
[34]Gerbeau P, Amodeo G, Henzler T, Santoni V, Ripoche P, Maurel C. The water permeability of Arabidopsis plasma membrane is regulated by divalent cations and pH
[J].Plant J
[35]Galmés J, Pou A, Alsina M M, Tomàs M, Medrano H, Flexas J. Aquaporin expression in response to different water stress intensities and recovery in Richter-110 (Vitis sp.): relationship with ecophysiological status. Planta, 2007, 226: 671-681
[36]Cheng L-M(程林梅), Tang L-S(唐连顺), Zhang Y-G(张原根). The effect of Ca2+ on water status, photosynthesis and respiration of cotton leaves under soil drought condition. J Shanxi Agric Sci (山西农业科学), 23(3): 23-26 (in Chinese with English abstract)
[1] 郭丽丽,张茜茜,郝立华,乔雅君,陈文娜,卢云泽,李菲,曹旭,王清涛,郑云普. 大气CO2倍增条件下冬小麦气体交换对高温干旱及复水过程的响应[J]. 作物学报, 2019, 45(6): 949-956.
[2] DO Thanh-Trung,李健,张风娟,杨丽涛,李杨瑞,邢永秀. 甘蔗与抗旱性相关差异蛋白质组分析[J]. 作物学报, 2017, 43(09): 1337-1346.
[3] 叶德练,齐瑞娟,管大海,李建民,张明才,李召虎. 免耕冬小麦田土壤微生物特征和土壤酶活性对水分调控的响应[J]. 作物学报, 2015, 41(08): 1212-1219.
[4] 李长宁,谢金兰,王维赞,梁强,李毅杰,董文斌,刘晓燕,杨丽涛,李杨瑞. 水分胁迫下甘蔗差异表达基因筛选及激素相关基因分析[J]. 作物学报, 2015, 41(07): 1127-1135.
[5] 李慧聪,李国良,郭秀林. 玉米热激转录因子基因ZmHSF-Like对逆境胁迫响应的信号途径[J]. 作物学报, 2014, 40(04): 622-628.
[6] 金秀锋,王宪国,任万杰,张晓科,谢惠民,范锋贵. 一个水分胁迫应答蛋白与小麦抗旱性的关系及其基因的定位[J]. 作物学报, 2014, 40(02): 198-204.
[7] 王卫锋,杨晓青,张岁岐,山仑. 剪根与水分胁迫对小麦单根和细胞导水率及TaPIP基因表达的影响[J]. 作物学报, 2013, 39(08): 1462-1468.
[8] 吴能表,洪鸿. 细胞内IP3-Ca2+途径对UV-B辐射下玉米幼苗光合特性的调控机制[J]. 作物学报, 2013, 39(02): 373-379.
[9] 张智猛,戴良香,宋文武,丁红,慈敦伟,康涛,宁堂原,万书波. 干旱处理迫对花生品种叶片保护酶活性和渗透物质含量的影响[J]. 作物学报, 2013, 39(01): 133-141.
[10] 冯晓敏,张永清. 水分胁迫对糜子植株苗期生长和光合特性的影响[J]. 作物学报, 2012, 38(08): 1513-1521.
[11] 张智猛, 戴良香, 丁红, 陈殿绪, 杨伟强, 宋文武, 万书波. 中国北方主栽花生品种抗旱性鉴定与评价[J]. 作物学报, 2012, 38(03): 495-504.
[12] 朱娟娟, 梁银丽, Tremblay Nicolas. 不同水氮处理对玉米氮素诊断指标的影响[J]. 作物学报, 2011, 37(07): 1259-1265.
[13] 郭彦军, 倪郁, 郭芸江, 韩龙, 唐华, 玉永雄. 水热胁迫对紫花苜蓿叶表皮蜡质组分及生理指标的影响[J]. 作物学报, 2011, 37(05): 911-917.
[14] 孙园园, 孙永健, 王明田, 李旭毅, 郭翔, 胡蓉, 马均. 种子引发对水分胁迫下水稻发芽及幼苗生理性状的影响[J]. 作物学报, 2010, 36(11): 1931-1940.
[15] 张蓓,阎爱华,刘刚,刘猛,侯春燕,王冬梅*. 胞内钙库对小麦叶锈菌侵染之过敏反应的影响[J]. 作物学报, 2010, 36(05): 833-839.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!