欢迎访问作物学报,今天是

作物学报 ›› 2010, Vol. 36 ›› Issue (06): 1050-1054.doi: 10.3724/SP.J.1006.2010.01050

• 研究简报 • 上一篇    下一篇

一个新的水稻黄绿叶突变体的遗传分析与基因定位

李秀兰1,2,孙小秋2,王平荣2,周慧2,邓晓建2,3,*   

  1. 1曲阜师范大学生命科学学院,山东曲阜273165;2四川农业大学水稻研究所,四川成都611130;3四川农业大学西南作物基因资源与遗传改良教育部重点实验室,四川成都611130
  • 收稿日期:2010-01-06 修回日期:2010-03-01 出版日期:2010-06-12 网络出版日期:2010-04-14
  • 通讯作者: 邓晓建, E-mail: xjdeng2006@yahoo.com.cn
  • 作者简介:李秀兰, E-mail: lxljewel@163.com
  • 基金资助:

    本研究由国家自然科学基金项目(30770145,30771314)和曲阜师范大学科研基金项目(XJ0706)资助。

Genetic Analysis and Gene Mapping of a Novel Yellow-Green Leaf Mutant in Rice

LI Xiu-Lan1,2, SUN Xiao-Qiu2, WANG Ping-Rong2, ZHOU Hui2,DENG Xiao-Jian2,3,*
  

  1. 1College of Life Science,Qufu Normal University,Qufu 273165,china;2Rice Research Institute,Sichuan Agricultural University,Chengdu 611130,China;3Key Laboratory of Southwest Crop Genetic Resources and Improvement,Ministry of Education,Sichuan Agricultural University,Chengdu 611130,China
  • Received:2010-01-06 Revised:2010-03-01 Published:2010-06-12 Published online:2010-04-14
  • Contact: DENG Xiao-Jian, E-mail: xjdeng2006@yahoo.com.cn
  • About author:LI Xiu-Lan, E-mail: lxljewel@163.com

摘要:

通过化学诱变获得一份稳定遗传的水稻黄绿叶突变体D83。该突变体苗期植株呈黄绿色,分蘖期开始逐渐转为淡绿色。与野生型相比,突变体苗期叶绿素a、叶绿素b和类胡萝卜素含量分别下降45.03%、53.93%和39.56%,成熟期每穗着粒数减少9.45%,千粒重下降10.76%。对D83与正常绿色品种杂交F1、F2代的遗传分析表明,D83的突变性状由一对隐性核基因控制。以D83/浙福802 F2代作定位群体,应用分子标记将D83所携带的突变基因定位于水稻第2染色体短臂的SSR标记RM110附近,InDel标记Ch2-27和Ch2-32之间,该基因与这2个InDel标记的遗传距离分别为1.2 cM和2.3 cM。认为D83所携带的突变基因是一个新的水稻黄绿叶突变基因,暂命名为chl13(t)。

关键词: 水稻, 黄绿叶突变体, 遗传分析, 基因定位

Abstract:

An inherited stably yellow-green leaf mutant D83 was isolated by chemistry mutagenesis. Its whole plant exhibited yellow-green character at the seedling stage, and gradually changed into pea green from the tillering stage. Compared with its wild-type parent 10079, at the seedling stage, the contents of chlorophyll a, chlorophyll b and carotenoid decreased by 45.03%, 53.93% and 39.56%, at the maturation period, the number of spikelets per panicle reduced by 9.45%, the 1000-grain weight by decreased 10.76%, respectively. Genetic analysis of F1 and F2 generations of D83 crossed with green rice varieties showed that the yellow-green leaf character was controlled by one pair of recessive nuclear genes. Genetic mapping of the mutant gene was conducted by using molecular marker and F2 mapping population of D83/Zhefu802. The results suggested that the mutant gene of D83 was mapped on the short arm of rice chromosome 2, nearby SSR marker RM110, between InDel markers Ch2-27 and Ch2-32. The genetic distances from the target gene to two InDel markers were 1.2 cM and 2.3 cM, respectively. The mutant gene of D83 was considered to be a new yellow-green leaf gene in rice and designated tentatively as chl13(t).

Key words: Oryza sativa L., Yellow-green leaf mutant, Genetic analysis, Gene mapping

[1]Lonosky P M, Zhang X S, Honavar V G. A proteomic analysis of maize chloroplast biogenesis
[J].Plant Physiol
[2]Highkin H, Boardman N K, Goodchild D J. Photosynthetic studies on a pea mutant deficient in chlorophyll
[J].Plant Physiol
[3]Okabe K, Schmed G H, Straub J. Genetic characterization and high efficiency photosynthesis of an aurea mutant of tobacco
[J].Plant Physiol
[4]Eric J S, Linda L W. A chlorophyll a/b-binding protein gene from soybean
[J].Plant Physiol
[5]Preiss S, Thornber J P. Stability of the apoproteins of light-harvesting complex ? and П during biogenesis of thylakoids in the chlorophyll b-less barley mutant chlorian f2. Plant Physiol, 1995, 107: 709-717
[6]Carol P, Stevenson D, Bisanz C, Breitenbach J, Sandamann G, Mache R, Coupland G, Kuntz M. Mutations in the arabidopsis gene IMMUTANTS cause a variegated phenotype by inactivating a chloroplast terminal oxidase associated with phytoene desaturation. Plant Cell, 1999, 11: 57-68
[7]Jung K H, Hur J, Ryu CH, Choi Y, Chung Y Y, Miyao A, Hirochika H, An G. Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system
[J].Plant Cell Physiol
[8]Larkin R M, Alonso J M, Ecker J R, Chory J. GUN4, a regulator of chlorophyll synthesis and intracellular signaling. Science, 2003, 299: 902-906
[9]Dong F-G(董凤高), Zhu X-D(朱旭东), Xiong Z-M(熊阵民), Cheng S-H(程式华), Sun Z-X(孙宗修), Min S-K(闵绍楷). Breeding of a photo-thermoperiod sensitive genie male sterile indica rice with a pale-green-leaf marker. Chin Rice Sci (中国水稻科学), 1995, 9(2): 65-70 (in Chinese with English abstract)
[10]Li X-Y(李贤勇), Wang C-T(王楚桃), Li S-W(李顺武), He Y-X(何永歆), Chen S-Q(陈世全). The discovery of a high chlorophyll content gene in rice. Southwest Chin J Agric Sci (西南农业学报), 2002, 15(4): 122 (in Chinese with English abstract)
[11]Qian Q(钱前), Zhu X-D(朱旭东), Zeng D-L(曾大力), Zhang X-H(张小惠), Yan X-Q(严学强), Xiong Z-M(熊振民). The study of a novel white-green material controlled by cytoplasmic gene. Chin Seed (作物品种资源), 1996, (4): 11-12 (in Chinese)
[12]Zhang H T, Li J J, Yoo J H, Yoo S C, Cho S H, Koh H J, Seo H S, Paek N C. Rice Chlorina-1 and Chlorina-9 encode ChlD and ChlI subunits of Mg-chelatase, a key enzyme for chlorophyll synthesis and chloroplast development
[J].Plant Mol Biol
[13]Wu Z M, Zhang X, He B, Diao L P, Sheng S L, Wang J L, Guo X P, Su N, Wang L F, Jiang L, Wang C M, Zhai H Q, Wan J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis
[J].-40Plant Physiol
[14]Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice
[J].Plant Mol Biol.2005, 57:805-818
[15]Arnon D I. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiol, 1949, 24: 1-15
[16]McCouch S R, Kochert G, Yu Z H. Molecular mapping of rice chromosome. Theor Appl Genet, 1998, 76: 815-829
[17]McCouch S R, Teytelman L, Xu Y B, Lobos K B, Clare K, Walton M, Fu B Y, Maghirang R, Stein L. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L
[J].). DNA Res
[18]Panaud O, Chen X, McCouch S R. Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice. Mol Gen Genet, 1996, 252: 597-607
[19]Terao T, Yamashita A, Katoh S. Chlorophyll b-deficient mutants of rice I. absorption and fluoresce spectra and chlorophyll a/b ratios. Plant Cell Physiol, 1985, 26: 1361-1367
[20]Hsu B D, Lee Y L. The photosystem II heterogeneity of chlorophyll b-deficient mutants of rice: a fluorescence induction study
[J].Aust J Plant Physiol
[21]Gong H-B(龚红兵), Chen L-M(陈亮明), Diao L-P(刁立平), Sheng S-L(盛生兰), Lin T-Z(林添资), Yang T-N(杨图南), Zhang R-X(张荣铣), Cao S-Q(曹树青), Zhai H-Q(翟虎渠), Dai X-B(戴新宾), Lu W(陆巍), Xu X-M(许晓明). Genetic analysis of chlorophyll-b less mutant in rice and its related characteristics. Sci Agric Sin (中国农业科学), 2001, 34(6): 686-689 (in Chinese with English abstract)
[22]Shu Q-Y(舒庆尧), Chen S-F(陈善福), Wu D-X(吴殿星), Shen S-Q(沈圣泉), Cui H-R(崔海瑞), Xia Y-W(夏英武). Studies on breeding of a new type of cytoplasmic male sterile rice line Quanlong A. Sci Agric Sin (中国农业科学), 2001, 34 (4): 349-354 (in Chinese with English abstract)
[23]Cao L-Y(曹立勇), Qian Q(钱前), Zhu X-D(朱旭东), Zeng D-L(曾大力), Min S-K(闵绍楷), Xiong Z-M(熊振民). Breeding of a photo-thermo sensitive genie male sterile indica rice Zhongzi S with a purple-leaf marker and the hoterosis of its hybrid rice produced with it. Acta Agron Sin (作物学报), 1999, 25(1): 44-49 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王好让, 张勇, 于春淼, 董全中, 李微微, 胡凯凤, 张明明, 薛红, 杨梦平, 宋继玲, 王磊, 杨兴勇, 邱丽娟. 大豆突变体ygl2黄绿叶基因的精细定位[J]. 作物学报, 2022, 48(4): 791-800.
[13] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[14] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!