欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 172-176.doi: 10.3724/SP.J.1006.2013.00172

• 研究简报 • 上一篇    下一篇

八个木薯品种(系)储藏根采后耐贮性生化指标的变化

文明富,胡梅珍,陈新,王海燕,卢诚,王文泉*   

  1. 中国热带农业科学院热带生物技术研究所,海南海口 571101
  • 收稿日期:2012-03-29 修回日期:2012-10-09 出版日期:2013-01-12 网络出版日期:2012-11-14
  • 通讯作者: 王文泉, E-mail: wquanww@hotmail.com, Tel: 0898-66894533
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2010CB126600), 国家现代农业产业技术体系建设专项(CARS-12)和国际合作项目基金(2011DFB31690, 2010DFA62040)资助。

Biochemical Indicators for Storability of Eight Cassava (Manihot esculenta Crantz) Tuberous Roots in Postharvest Storage Process

WEN Ming-Fu,HU Mei-Zhen,CHEN Xin,WANG Hai-Yan,LU Cheng,WANG Wen-Quan*   

  1. Institute of Tropical Bioscience & Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
  • Received:2012-03-29 Revised:2012-10-09 Published:2013-01-12 Published online:2012-11-14
  • Contact: 王文泉, E-mail: wquanww@hotmail.com, Tel: 0898-66894533

摘要:

选用8个木薯品种()调查和评价储藏根采后37121727 d贮藏保鲜过程,发现其耐贮存性从高至低依次为SMHBRA755SC205SC5BRA4407G-2T1BRA258。利用线性回归分析表明,木薯储藏根贮存变质抗性与干物质含量呈负相关,相关系数r0.687 (P=0.05);与淀粉率含量呈负相关,相关系数r0.696 (P=0.05);与储藏根氢氰酸(HCN)含量无相关性。其中SMH贮存变质抗性最强,储藏根干物质和淀粉含量最低;BRA258T1贮存变质抗性最差,干物质和淀粉含量最高,因此这3个木薯品种()在育种上具有较高的利用价值。

关键词: 木薯, 储藏根, 耐贮存, 生化指标

Abstract:

Cassava (Manihot esculenta Crantz) is an important food and bio-energy crop, which grows in marginal land by subsistent farmers in tropics and subtropics. Cassava contains abundant starch in its tuberous roots, but easily turns rot after harvest, which greatly affects storage life and subsequent starch processing. In this study, tuberous roots of eight varieties (lines) were evaluated at 3, 7, 12, 17, and 27 days after harvest. The results showed that storability of tuberous roots was SMH>BRA755>SC205>SC5> BRA440>7G-2>T1>BRA258. The association between the storability and each of dry matter, starch content, and HCN content was evaluated by a linear regression analysis. There were negative correlation of storability with dry matter (r=0.687, P=0.05) and starch content (r=0.696, P=0.05), and no correlation between the storability and HCN content. In addition, SMH showed the higher storability, lower dry matter and starch content, but BRA258 and T1 showed lower storability, higher dry matter and starch content. These special genotypes should be useful for cassava breeding in the future.

Key words: Cassava, Tuberous root, storability, Biochemical indicators

[1]Rogers D, Appan S. Flora Neotropica Monograph. New York: Hafner Press, 1973



[2]Nassar N M A, Hashimoto D Y C, Fernandes S D C. Wild Manihot species: botanical aspects, geographic distribution and economic value. Genet Mol Res, 2008, 7: 16–28



[3]El-Sharkawy M A. Cassava biology and physiology. Plant Mol Biol, 2004, 56: 481–501



[4]Yu S, Tao J. Energy efficiency assessment by life cycle simulation of cassava-based fuel ethanol for automotive use in Chinese Guangxi context. Energy, 2009, 34: 22–31



[5]Jansson C, Westerbergh A, Zhang J M, Hu X W, Sun C X. Cassava, a potential biofuel crop in (the) People’s Republic of China. Appl Energy, 2009, 86: 95–99



[6]Plumbley R A, Rickard J E. Post-harvest physiological deterioration of cassava. Trop Sci, 1991, 31: 295–303



[7]Tanaka Y, Data E S, Hirose S, Taniguchi T, Uritani I. Biochemical-changes in secondary metabolites in wounded and deteriorated cassava roots. Agric Biol Chem, 1983, 47: 693–700



[8]Wheatley C C, Schwabe W W. Scopoletin involvement in post-harvest physiological deterioration of cassava root (Manihot esculenta Crantz). J Exp Bot, 1985, 36: 783–791



[9]Buschmann H., Rodriguez M X, Tohme J, Beeching J R. Accumulation of hydroxycoumarins during post-harvest deterioration of tuberous roots of cassava (Manihot esculenta Crantz). Ann Bot, 2000, 86: 1153–1160



[10]Rudi N, Norton G, Alwang J, Asumugha G. Economic impact analysis of marker-assisted breeding for resistance to pests and post-harvest deterioration in cassava. Afric J Agric Res, 2010, 14(2): 110–122



[11]Van Oirschot Q E A, O’Brien G M, Dufour D, El-Sharkawy M A, Mesa E. The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics. J Sci Food Agric, 2000, 80: 1866–1873



[12]Ceballos H, Fregene M, Pérez J C, Morante N, Calle F. Cassava genetic improvement. In: Kang M S, Priyadarshan P M, eds. Breeding Major Food Staples. Ames, IA, US: Blackwell Publishing, 2007. pp 365–391



[13]Wheatley C, Lozano C, Gomez G. Post-harvest deterioration of cassava roots. In: Cock J H, Reyes J A, eds. Cassava: Research, Production and Utilization. Cali, Colombia, UNDP-CIAT, 1985. pp 655–671



[14]Gu Z-B(顾正彪), Hong Y(洪雁), Zhang Y-P(张燕萍), Chen H-X(陈洪兴), Zhong L-M(钟立满), Li Z-F(李兆丰), Zhou X-Y(周心怡). GB/T 20378-2006. Native Starch-Determination of Starch Content-Ewers Polarimetric Method (原淀粉-淀粉含量的测定-旋光法). ISO 10520:1997 (in Chinese)



[15]Steel R G D, Torrie J H. Principles and Procedures of Statistics. New York: McGraw-Hill, 1960



[16]SAS. SAS/STAT 9.1 User’s Guide. Cary, NC: SAS Inst, 2008



[17]Reilly K, Gomez-Vasquez R, Buschmann H, Tohme J, Beeching J R. Oxidative stress responses during cassava postharvest physiological deterioration. Plant Mol Biol, 2003, 53: 669–685



[18]Buschmann H, Reilly K, Rodriguez M X, Tohme J, Beeching J R. Hydrogen peroxide and flavan-3-ols in storage roots of cassava (Manihot esculenta Crantz) during postharvest deterioration. J Agric Food Chem, 2000, 48: 5522–5529



[19]Huang J, Bachem C, Jacobsen E, Visser R G F. Molecular analysis of differentially expressed genes during postharvest deterioration in cassava (Manihot esculenta Crantz) tuberous roots. Euphytica, 2001, 120: 85–93



[20]Morante N, Sánchez T, Ceballos H, Calle F, Pérez J C, Egesi C, Cuambe C E, Escobar A F, Ortiz D, Chávez A L, Fregene M. Tolerance to postharvest physiological deterioration in cassava roots. Crop Sci, 2009, 50: 1333–1339



[21]Chavez A L, Bedoya J M, Sánchez T, Iglesias C, Ceballos C, Roca W. Iron, carotene, and ascorbic acid in cassava roots and leaves. Food Nutr Bull, 2000, 21: 410–413

[1] 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49.
[2] 邓昌哲,姚慧,安飞飞,李开绵,陈松笔. 木薯块根有色体分离及其蛋白质组学的研究[J]. 作物学报, 2017, 43(09): 1290-1299.
[3] 于晓玲,阮孟斌,王斌,杨义伶,王树昌*,彭明*. 木薯转录因子基因MeHDZ14的克隆与分析[J]. 作物学报, 2017, 43(08): 1181-1189.
[4] 罗俊杰,欧巧明,叶春雷,王方,王镛臻,陈玉梁. 重要胡麻栽培品种的抗旱性综合评价及指标筛选[J]. 作物学报, 2014, 40(07): 1259-1273.
[5] 黄巧义,唐拴虎,陈建生,张发宝,解开治,黄旭,蒋瑞萍,李苹. 木薯物质累积特征及其施肥效应研究[J]. 作物学报, 2013, 39(01): 126-132.
[6] 齐兰,王文泉,张振文,叶剑秋,李开绵. 利用SRAP标记构建18个木薯品种的DNA指纹图谱[J]. 作物学报, 2010, 36(10): 1642-1648.
[7] 罗兴录;岑忠用;谢和霞;张平刚;莫凡;潘英华;陆飞伍. 不同木薯品种抗衰老生理与淀粉积累特性研究[J]. 作物学报, 2007, 33(06): 1018-1024.
[8] 王新超;杨亚军;陈亮;阮建云. 茶树氮素利用效率相关生理生化指标初探[J]. 作物学报, 2005, 31(07): 926-931.
[9] 冯义军;张天真;潘家驹. 哈克尼西棉雄性不育细胞质对杂种一代某些生理生化指标的影响[J]. 作物学报, 1993, 19(01): 17-22.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!