欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 177-183.doi: 10.3724/SP.J.1006.2013.00177

• 研究简报 • 上一篇    下一篇

花期高温胁迫对水稻花药生理特性及花粉性状的影响

张桂莲1,2,张顺堂2,肖浪涛3,武小金1,肖应辉2,陈立云2,*   

  1. 1,# 深圳市龙岗区农业科技推广中心博士后创新基地, 广东深圳518118;2,# 湖南农业大学农学院, 湖南长沙410128;3 湖南农业大学植物激素重点实验室,湖南长沙410128
  • 收稿日期:2012-05-02 修回日期:2012-09-05 出版日期:2013-01-12 网络出版日期:2012-11-14
  • 通讯作者: 陈立云,E-mail: chenliyun996@163.com, Tel: 0731-84618757
  • 基金资助:

    本研究由国家自然科学基金项目(30900874, 30971745), 湖南省自然科学基金项目(11JJ3026)和湖南省教育厅基金项目(YB2009B023)资助。

Effect of High Temperature Stress on Physiological Characteristics of Anther and Pollen Traits of Rice at Flowering Stage

ZHANG Gui-Lian1,2,ZHANG Shun-Tang2,XIAO Lang-Tao3,WU Xiao-Jin1,XIAO Ying-Hui2,CHEN Li-Yun2,*   

  1. 1,#  Post-doctoral Innovation Base of Agricultural Science and Technology Promotion Center of Longgang District , Shenzhen 518118, China; 2,#  College of Agronomy,Hunan Agricultural University, Changsha 410128, China; 3 Key Laboratory of Phytohormones Hunan Agricultural University, Changsha 410128, China
  • Received:2012-05-02 Revised:2012-09-05 Published:2013-01-12 Published online:2012-11-14
  • Contact: 陈立云,E-mail: chenliyun996@163.com, Tel: 0731-84618757

摘要:

探明花期高温胁迫对水稻花器官的影响机制,以耐热水稻品系996和热敏感水稻品系4628为材料,在人工气候室进行高温(8:00~17:00,37℃;17:00~次日8:00,30℃)和适温处理(8:00~17:00, 30;17:00~次日8:00,25℃), 研究高温胁迫对水稻花药抗氧化酶活性、膜透性、MDA含量及花粉性状等生理特性的影响。结果表明,高温胁迫下,水稻花药中SOD、POD、CAT、AsA-POD活性在高温胁迫初期均明显增加,尔后快速下降,耐热品系996这四种酶活性增幅大于热敏感品系4628;热敏感品系4628花药中MDA含量和膜透性在高温胁迫下增幅大于耐热性品系996;高温胁迫导致花药开裂、花粉萌发率和柱头上花粉粒数的显著下降,花粉粒直径增大。但耐热品系996的前3项参数显著高于热敏感品系4628。高温胁迫下水稻花药中保持较高抗氧化酶活性、较好的花粉散落特性和花粉萌发特性及较低的膜透性和MDA含量,是品种耐高温的生理基础。

关键词: 水稻, 花期高温, 花药, 生理特性, 花粉性状

Abstract:

To ascertain the mechanism affecting flower organ of rice by high temperature stress at flowering stage, we treated heat tolerant line 996 and heat-sensitive line 4628 with hightemperature (8:00–17:00, 37°C; 17:00–8:00, 30°C) and optimal temperature (8:00–17:00, 30°C; 17:00–8:00, 25°C) in the growth chambers. The antioxidant enzyme activities, membrane permeability and MDA content in anther and pollen characters of rice were studied. The results showed the superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and ascorbic acid-peroxidase (AsA-POD) activities in anther of rice increased obviously at early stage of high temperature stress, then decreased rapidly, and higher in heat tolerant line 996 than in line 4628, malonyldialdehyde (MDA) content and membrane permeability in heat-sensitive line 4628 were greater than those in heat tolerant line 996. The anther dehiscence coefficient, pollen germination rate and pollen grains number on the stigma significantly decreased, pollen diameter increased under high temperature stress. Anther dehiscence coefficient, pollen germination rate and pollen grains number on the stigma in heat tolerant line 996 were significantly higher than those in heat-sensitive line 4628 under high temperature stress. Under high temperature stress, higher antioxidant enzyme activities, better pollen grain pollination and germination character, as well as lower membrane permeability and MDA content of anther in rice could be the physiological basis of high-temperature tolerance.

Key words: Rice, High temperature at flowering stage, Anther, Physiological characteristics, Pollen traits

[1]IPCC. In: Houghton J T, Ding Y, Griggs D J, Noguer M, van der Linden P J, Dai X, Maskell K, Johnson C A, eds. Climate Change 2001: Scientific Basis. New York, USA: Cambridge University Press, 2001



[2]Peng S B, Huang J L, Sheehy J E, Jaza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101: 9971–9975



[3]Wang C-L(王才林), Zhong W-G(仲维功). Effects of high temperature on seed setting rate of rice and its prevention. Jiangsu Agric Sci (江苏农业科学), 2004, (1): 15–18 (in Chinese with English abstract)



[4]Yang H-C(杨惠成), Huang Z-Q(黄仲青), Jiang Z-X(蒋之埙), Wang X-W(王相文). Heat damage and defense technology of early and middle rice at flowering stage in Anhui in 2003. J Anhui Agric Sci (安徽农业科学), 2004, 32(1): 3–4 (in Chinese with English abstract)



[5]Prasad P V V, Boote K J, Allen L H Jr, Sheehy J E, Thomas J M G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res, 2006, 95: 398–411



[6]Li C-D(李成德). Analysis of the emergence of large empty-unfilled grains of rice under high temperature. J Shanxi Agric Sci (陕西农业科学), 2003, (5): 45–47 (in Chinese with English abstract)



[7]Cao Y-Y(曹云英), Duan H(段骅), Yang L-N(杨立年), Wang Z-Q(王志琴), Liu L-J(刘立军), Yang J-C(杨建昌). Effect of high temperature during heading and early grain filling on grain yield of Indica rice cultivars differing in heat-tolerance and its physiological mechanism. Acta Agron Sin (作物学报), 2009, 35(3): 512–521 (in Chinese with English abstract)



[8]Xie X-J(谢晓金), Shen S-H(申双和), Li B-B(李秉柏), Liu C-L(刘春雷), Zhou Q(周千). Influences of high temperature stress on blooming and seed setting of rice during heading stage. Chin J Agrometeorol (中国农业气象), 2009, 30(2): 252–256 (in Chinese with English abstract)



[9]Guo J-X(郭晶心), Zeng W-Z(曾文智), Zhou B-J(周宝津), Lu H-R(卢浩荣), Chen G P(陈庚平), Tang H-W(唐辉武), Zhou S-C(周少川), Liu Y-G(刘耀光). Effect of high temperature on pollen germination and seed setting of rice during heading period. J South China Agric Univ (华南农业大学学报), 2010, 31(2): 50–53 (in Chinese with English abstract)



[10]Ekanayake I J, Steponkus P L, De Datta S K. Sensitivity of pollination to water deficits at anthesis in upland rice. Crop Sci, 1990, 30: 310–314



[11]Li H-S(李合生), Sun Q(孙群), Zhao S-J(赵世杰), Zhang W-H(章文华). The Experiment Principle and Technique for Plant Physiology and Biochemistry (植物生理生化试验原理和技术). Beijing: Higher Education Press, 2000. pp 167-169 (in Chinese)



[12]Scebba F, Sebastiani L, Vitagliano C. Protective enzymes against activated oxygen species in wheat (Triticum aestivum L.) seedling: response to cold accilimation. Plant Physiol, 1999, 155: 762–768



[13]Zhang X-Z(张宪政). Research Method of Crop Physiology (作物生理研究法). Beijing: Agriculture Press, 1992. pp 201–212, 197–198 (in Chinese)



[14]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981, 22: 867–880



[15]Wei M(隈溟), Wang G-M(王光明), Chen G-H(陈国惠), Zhu Z-J(朱自均), Yang C-J(杨朝进). Effect of high temperature at full flowering stage on seed setting percentage of two-line hybrid rice Liangyoupeijiu. Hybrid Rice (杂交水稻), 2002, 17(1): 51–53 (in Chinese with English abstract)



[16]Matsui T, Omasa K, Horie T. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod Sci, 2000, 3: 430–434



[17]Lü Q(吕庆), Zheng R-L(郑荣梁). Membranes lipid peroxidation change and lipid-removal deduced by drought and activated oxygen. Sci China (Ser C)(中国科学C), 1996, 26(1): 26–30 (in Chinese)



[18]Sun Y(孙艳), Xu W-J(徐伟君). Effect of high temperature stress on the metabolism of ascorbic acid in Cucumber seedlings. Acta Agric Boreali-Occident Sin (西北农业学报), 2007, 16(6): 164–169 (in Chinese with English abstract)



[19]Prasad T K. Mechanisms of chilling-induced oxidative stress injury and tolerance: Change in antioxidant system, oxidation of proteins and lipids and protease activities. Plant J, 1996, 10: 1017–1026



[20]Matsui T, Omasa K, Horie T. Mechanism of anther dehiscence in rice (Oryza sativa L.). Ann Bot, 1999, 84: 501–506



[21]Yoshida S, Satake T, Mackill D J. High temperature stress in rice. In: IRRI Research Papers 67. Manila, Philippines: International Rice Research Institute, 1981



[22]Luo G-H(罗广华), Wang A-G(王爱国), Guo J-Y(郭俊颜). Effects of some exogenous factors on superoxide dismutase activity in soybean seedlings. Acta Phytophysiol Sin (植物生理学报), 1990, 16(3): 239–244 (in Chinese with English abstract)



[23]Kanazawa S, Sano S, Koshiba T, Ushimaru T. Changes in antioxidative in cucumber cotyledons during natural senescence comparison with those during dark-induced senescences. Plant Physiol, 2000, 109: 211–216



[24]Yu S-W(余叔文), Tang Z-C(汤章城). The Plant Physiology and Molecular Biology (植物生理与分子生物学). Beijing: Science Press, 2001. p 381 (in Chinese)



[25]Chen S-Y(陈少裕). Membrane-lipid peroxide and plant stress. Chin Bull Bot (植物学通报), 1989, 6(4): 211–217 (in Chinese with English abstract)



[26]Zhang B(张彬), Rui W-Y(芮雯奕), Zheng J-C(郑建初), Zhou B(周博), Yang F(杨飞), Zhang W-J(张卫建). Responses of pollen activity and seed setting of rice to high temperature of heading period. Acta Agron Sin (作物学报), 2007, 33(7): 1177–1181 (in Chinese with English abstract)



[27]Satake T, Yoshida S. High temperature-induced sterility in indica rice at flowering. Jpn J Crop Sci, 1978, 47(1): 6–17 (in Japanese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[14] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
[15] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!