作物学报 ›› 2013, Vol. 39 ›› Issue (01): 177-183.doi: 10.3724/SP.J.1006.2013.00177
张桂莲1,2,张顺堂2,肖浪涛3,武小金1,肖应辉2,陈立云2,*
ZHANG Gui-Lian1,2,ZHANG Shun-Tang2,XIAO Lang-Tao3,WU Xiao-Jin1,XIAO Ying-Hui2,CHEN Li-Yun2,*
摘要:
为探明花期高温胁迫对水稻花器官的影响机制,以耐热水稻品系996和热敏感水稻品系4628为材料,在人工气候室进行高温(8:00~17:00,37℃;17:00~次日8:00,30℃)和适温处理(8:00~17:00, 30℃;17:00~次日8:00,25℃), 研究高温胁迫对水稻花药抗氧化酶活性、膜透性、MDA含量及花粉性状等生理特性的影响。结果表明,高温胁迫下,水稻花药中SOD、POD、CAT、AsA-POD活性在高温胁迫初期均明显增加,尔后快速下降,耐热品系996这四种酶活性增幅大于热敏感品系4628;热敏感品系4628花药中MDA含量和膜透性在高温胁迫下增幅大于耐热性品系996;高温胁迫导致花药开裂、花粉萌发率和柱头上花粉粒数的显著下降,花粉粒直径增大。但耐热品系996的前3项参数显著高于热敏感品系4628。高温胁迫下水稻花药中保持较高抗氧化酶活性、较好的花粉散落特性和花粉萌发特性及较低的膜透性和MDA含量,是品种耐高温的生理基础。
[1]IPCC. In: Houghton J T, Ding Y, Griggs D J, Noguer M, van der Linden P J, Dai X, Maskell K, Johnson C A, eds. Climate Change 2001: Scientific Basis. New York, USA: Cambridge University Press, 2001[2]Peng S B, Huang J L, Sheehy J E, Jaza R C, Visperas R M, Zhong X H, Centeno G S, Khush G S, Cassman K G. Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci USA, 2004, 101: 9971–9975[3]Wang C-L(王才林), Zhong W-G(仲维功). Effects of high temperature on seed setting rate of rice and its prevention. Jiangsu Agric Sci (江苏农业科学), 2004, (1): 15–18 (in Chinese with English abstract)[4]Yang H-C(杨惠成), Huang Z-Q(黄仲青), Jiang Z-X(蒋之埙), Wang X-W(王相文). Heat damage and defense technology of early and middle rice at flowering stage in Anhui in 2003. J Anhui Agric Sci (安徽农业科学), 2004, 32(1): 3–4 (in Chinese with English abstract)[5]Prasad P V V, Boote K J, Allen L H Jr, Sheehy J E, Thomas J M G. Species, ecotype and cultivar differences in spikelet fertility and harvest index of rice in response to high temperature stress. Field Crops Res, 2006, 95: 398–411[6]Li C-D(李成德). Analysis of the emergence of large empty-unfilled grains of rice under high temperature. J Shanxi Agric Sci (陕西农业科学), 2003, (5): 45–47 (in Chinese with English abstract)[7]Cao Y-Y(曹云英), Duan H(段骅), Yang L-N(杨立年), Wang Z-Q(王志琴), Liu L-J(刘立军), Yang J-C(杨建昌). Effect of high temperature during heading and early grain filling on grain yield of Indica rice cultivars differing in heat-tolerance and its physiological mechanism. Acta Agron Sin (作物学报), 2009, 35(3): 512–521 (in Chinese with English abstract)[8]Xie X-J(谢晓金), Shen S-H(申双和), Li B-B(李秉柏), Liu C-L(刘春雷), Zhou Q(周千). Influences of high temperature stress on blooming and seed setting of rice during heading stage. Chin J Agrometeorol (中国农业气象), 2009, 30(2): 252–256 (in Chinese with English abstract)[9]Guo J-X(郭晶心), Zeng W-Z(曾文智), Zhou B-J(周宝津), Lu H-R(卢浩荣), Chen G P(陈庚平), Tang H-W(唐辉武), Zhou S-C(周少川), Liu Y-G(刘耀光). Effect of high temperature on pollen germination and seed setting of rice during heading period. J South China Agric Univ (华南农业大学学报), 2010, 31(2): 50–53 (in Chinese with English abstract)[10]Ekanayake I J, Steponkus P L, De Datta S K. Sensitivity of pollination to water deficits at anthesis in upland rice. Crop Sci, 1990, 30: 310–314[11]Li H-S(李合生), Sun Q(孙群), Zhao S-J(赵世杰), Zhang W-H(章文华). The Experiment Principle and Technique for Plant Physiology and Biochemistry (植物生理生化试验原理和技术). Beijing: Higher Education Press, 2000. pp 167-169 (in Chinese)[12]Scebba F, Sebastiani L, Vitagliano C. Protective enzymes against activated oxygen species in wheat (Triticum aestivum L.) seedling: response to cold accilimation. Plant Physiol, 1999, 155: 762–768[13]Zhang X-Z(张宪政). Research Method of Crop Physiology (作物生理研究法). Beijing: Agriculture Press, 1992. pp 201–212, 197–198 (in Chinese)[14]Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol, 1981, 22: 867–880[15]Wei M(隈溟), Wang G-M(王光明), Chen G-H(陈国惠), Zhu Z-J(朱自均), Yang C-J(杨朝进). Effect of high temperature at full flowering stage on seed setting percentage of two-line hybrid rice Liangyoupeijiu. Hybrid Rice (杂交水稻), 2002, 17(1): 51–53 (in Chinese with English abstract)[16]Matsui T, Omasa K, Horie T. High temperature at flowering inhibits swelling of pollen grains, a driving force for thecae dehiscence in rice (Oryza sativa L.). Plant Prod Sci, 2000, 3: 430–434[17]Lü Q(吕庆), Zheng R-L(郑荣梁). Membranes lipid peroxidation change and lipid-removal deduced by drought and activated oxygen. Sci China (Ser C)(中国科学C), 1996, 26(1): 26–30 (in Chinese) [18]Sun Y(孙艳), Xu W-J(徐伟君). Effect of high temperature stress on the metabolism of ascorbic acid in Cucumber seedlings. Acta Agric Boreali-Occident Sin (西北农业学报), 2007, 16(6): 164–169 (in Chinese with English abstract)[19]Prasad T K. Mechanisms of chilling-induced oxidative stress injury and tolerance: Change in antioxidant system, oxidation of proteins and lipids and protease activities. Plant J, 1996, 10: 1017–1026[20]Matsui T, Omasa K, Horie T. Mechanism of anther dehiscence in rice (Oryza sativa L.). Ann Bot, 1999, 84: 501–506[21]Yoshida S, Satake T, Mackill D J. High temperature stress in rice. In: IRRI Research Papers 67. Manila, Philippines: International Rice Research Institute, 1981[22]Luo G-H(罗广华), Wang A-G(王爱国), Guo J-Y(郭俊颜). Effects of some exogenous factors on superoxide dismutase activity in soybean seedlings. Acta Phytophysiol Sin (植物生理学报), 1990, 16(3): 239–244 (in Chinese with English abstract)[23]Kanazawa S, Sano S, Koshiba T, Ushimaru T. Changes in antioxidative in cucumber cotyledons during natural senescence comparison with those during dark-induced senescences. Plant Physiol, 2000, 109: 211–216[24]Yu S-W(余叔文), Tang Z-C(汤章城). The Plant Physiology and Molecular Biology (植物生理与分子生物学). Beijing: Science Press, 2001. p 381 (in Chinese)[25]Chen S-Y(陈少裕). Membrane-lipid peroxide and plant stress. Chin Bull Bot (植物学通报), 1989, 6(4): 211–217 (in Chinese with English abstract)[26]Zhang B(张彬), Rui W-Y(芮雯奕), Zheng J-C(郑建初), Zhou B(周博), Yang F(杨飞), Zhang W-J(张卫建). Responses of pollen activity and seed setting of rice to high temperature of heading period. Acta Agron Sin (作物学报), 2007, 33(7): 1177–1181 (in Chinese with English abstract)[27]Satake T, Yoshida S. High temperature-induced sterility in indica rice at flowering. Jpn J Crop Sci, 1978, 47(1): 6–17 (in Japanese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[13] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
[14] | 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746. |
[15] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
|