欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (01): 164-171.doi: 10.3724/SP.J.1006.2013.00164

• 研究简报 • 上一篇    下一篇

玉米丝氨酸羧肽酶基因(ZmSCP)的克隆及表达分析

刘丽1,2,王静2,张志明2,赵茂俊3,潘光堂2,*   

  1. 1 四川农业大学人事处, 四川雅安 625014; 2 四川农业大学玉米研究所 / 西南玉米生物学与遗传育种重点实验室, 四川成都 611130; 3四川农业大学生命科学与理学院, 四川雅安 625014
  • 收稿日期:2012-05-02 修回日期:2012-09-05 出版日期:2013-01-12 网络出版日期:2012-11-14
  • 通讯作者: 潘光堂, E-mail: pangt@sicau.edu.cn, Tel: 0835-2882714
  • 基金资助:

    本研究由国家自然科学基金项目(30900901),国家转基因生物新品种培育科技重大专项(2008ZX08003003),四川省科技厅应用基础项目(2006J13-039)和四川省教育厅重点项目(07ZA063)资助。

Cloning and Expression Analysis of Serine Carboxypeptidases in Maize (Zea mays L.)

LIU Li1,2,WANG Jing2,ZHANG Zhi-Ming2,ZHAO Mao-Jun3,PAN Guang-Tang2,*   

  1. 1 Personnel Department, Sichuan Agricultural University, Ya’an 625014, China; 2 Maize Research Institute, Sichuan Agricultural University / Key Laboratory of Crop Genetic Resources and Improvement of Chinese Ministry of Education, Chengdu 611130, China; 3 Department of Life Sciences, Sichuan Agricultural University, Ya’an 625014, China
  • Received:2012-05-02 Revised:2012-09-05 Published:2013-01-12 Published online:2012-11-14
  • Contact: 潘光堂, E-mail: pangt@sicau.edu.cn, Tel: 0835-2882714

摘要:

丝氨酸羧肽酶(serine carboxypeptidases, SCP)基因在植物生长发育及抗病性方面起着重要作用。本研究在立枯丝核菌胁迫24 h, RT-PCR技术和RACE技术克隆玉米丝氨酸羧肽酶基因全长cDNA序列, 命名为ZmSCP。结果显示, 该基因全长为1874 bp (GenBank登录号为JF682634), 开放阅读框为999 bp, 编码332个氨基酸, 相对分子量为36.505 kD, 等电点为4.75ZmSCP基因编码蛋白与其他高等植物中该蛋白具有一定的同源性, 同源性比例范围为42%~81%。进化树分析表明ZmSCP基因与水稻、高粱亲缘关系较近, 属于同一进化分支。ZmSCP基因编码蛋白序列保守结构域分析显示该基因编码产物具有S10结构域, 属于S10超家族。半定量RT-PCR与实时荧光定量PCR结果表明, ZmSCP基因在立枯丝核菌ABAJA低温高盐胁迫条件下, 总体均呈诱导表达的趋势。其中, 在立枯丝核菌AG1-IA诱导下, ZmSCP基因表达呈两步诱导趋势, 1次诱导出现在接菌后24 h, 然后下降, 2次诱导出现在接菌后60 h。在ABAJA、低温和盐胁迫下, ZmSCP基因表达均呈现上调趋势, 表达高峰均出现在胁迫后48 h

关键词: 丝氨酸羧肽酶, 基因克隆, 表达模式

Abstract:

Serine carboxypeptidases play important roles in regulating the growth, development and disease resistance in plants. Reverse transcription-polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) were applied to clone the serine carboxypeptidase gene named ZmSCP using cDNA of the high resistant maize inbred line R15 induced by Rhizoctonia solani. The cDNA full length of serine carboxypeptidase gene is 1874 bp (GenBank accession number: JF682634) containing a 999 bp complete open reading frame, encode 333 amino acids, with the molecular weight of 36.505 kD for the expected encoded proteins, and the isoelectric point of 4.75. The homology analysis indicated that the homology percentage were from 42% to 81% between the deduced amino acids from Zea mays L. and those from other plants. Phylogenetic analysis revealed that ZmSCP showed closer kinship with that of Oryza satiua and sorghum, indicating that they belong to the same evolutionary branch. ZmSCP protein has S10 conserved domain and belongs to S10 superfamily. The ZmSCP mRNA expression was analyzed by semi-quantitative and quantitative methods under different stress conditions. It is showed that the ZmSCP gene expression was basically up-regulated after ABA, JA, low temperature and salt treatments, and showed two-step trend under induction of Rhizoctonia solani, with the first peak at 24 h after inoculation, and the second peak at 60 h, showing significant differences compared with the case of non-inoculated. In addition, the expression level of ZmSCP gene increased under the ABA, JA, low temperature and salt stresses with an expression peak at 48 h.

Key words: Serine carboxypeptidases, Gene cloning, Expression pattern

[1]Xu S(徐莎), Hu J(胡军), Chen Y-H(陈宇红), Hu Z-M(胡赞民), Xiang Q-B(向其柏). Research progress on transcription factor DREB. J Agric Biotech (农  业生物技术学报), 2008, 16(4): 706–713 (in Chinese with English abstract)



[2]Zhu J K. Salt and drought stress signal transduction in plants. Ann Rev Plant Biol, 2002, 53: 247–273



[3]Xue R-F(薛仁风), Zhu Z-D(朱振东), Wang X-M(王晓鸣), Wang L-F(王兰芬), Wu X-F(武小菲), Wang S-M(王述民). Cloning and expression analysis of Fusarium wilt resistance-related gene PvCaM1 in common bean (Phaseolus vulgaris L.). Acta Agron Sin (作物学报), 2012, 38(4): 606–613 (in Chinese with English abstract)



[4]Sun X(孙霞), Liu J-Y(刘晋跃), Yuan X-H(袁晓辉), Pan X-W(潘相文), Du W-G(杜维广), Ren H-X(任海祥), Ma Y-B(马永波), Jun A B E, Qiu L-J(邱丽娟), Liu B-H(刘宝辉). Cloning and expression analysis of GmMYB genes induced by abiotic stresses. Acta Agron Sin (作物学报), 2012, 38(2): 360–368 (in Chinese with English abstract)



[5]Vendrell J, Aviles F X. Carboxypeptidases. In: Turk V ed. Proteases: New Perspective. Basel: Birkhauser-Verlag, 1999, 2: 13–34



[6]Mahoney J A, Ntolosi B, DaSilva R P, Gordon S, McKnight A J. Cloning and characterization of CPVL, a novel serine carboxypeptidase, from human macrophages. Genomics, 2001, 72: 243–251



[7]Mortensen U H, Olesen K, Breddam K. Carboxypeptidase C including carboxypeptidase Y. In: Barrett A J, Rawlings N D, Woessner J F, eds. Handbook of Proteolytic Enzymes. London: Academic Press, 1999, Vol. 132, pp 389–393



[8]Liu H Z, Wang X E, Zhang H J, Yang Y Y, Ge X C, Song F M. A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene, 2008, 420: 57–65



[9]Shirley A M, Chapple C. Biochemical characterization of sinapoy glucose choline sinapoyltransferase, a serine carboxypeptidase-like protein that functions as an acyltransferase in plant secondary metabolism. Biol Chem, 2003, 278: 19870–19877



[10]Cercos M, Urbez C, Carbonc J. A serine carboxypeptidase gene (PsCP), expressed in early steps of reproductive and vegetative development in Pisum sativum, is indueed by gibberellins. Plant Mol Biol, 2003, 51: 165–174



[11]Degan D F, Rocher A, Cameron-Mills V, Von Wettstein D. The expression of serine carboxypeptidases during maturation and germination of the barley grain. Proc Natl Acad Sci USA, 1994, 91: 8209–8213



[12]Domnguez F, Gonzlez M C, Cejudo F J. A germination-related gene encoding a serine carboxypeptidase is expressed during the differentiation of the vascular tissue in w heat grains and seedlings. Planta, 2002, 215: 727–734



[13]Granat S J, Wison K A, Wilson A L. New serine carboxypeptidase in mung bean seedling cotyledons. J Plant Physiol, 2003, 160: 1263–1266



[14]Moura D S, Bergey D R, Ryan C A. Characterization and localization of a wound-inducible type1 serine-carboxypeptidase from leaves of tomato plants. Planta, 2001, 212: 222–230



[15]Li J, Lease K A, Tax F E, Walker J C. BRS1, a serine carboxypeptidase, regulates BRI1 signaling in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2001, 98: 5916−5921



[16]Milkowski C, Strack D. Serine carboxypeptidase-like acyltransferases. Phytochemistry, 2004, 65: 517–524



[17]Zhang Z M, Liu L, Lin H J, Yuan G S, Zeng X, Shen Y O, Zhao M J, Zhao Q, Pan G T. Identification of genes differentially expressed in maize (Zea mays L.) during Rhizoctonia Solani Kühn infection by suppression subtractive hybridization. Afr J Biotechnol, 2012, 11: 2827–2838



[18]Wang Y-H(王育华), Zou J(邹杰), Chen X-B(陈信波). Research progress of plant SCP and SCPL proteins. J Biol (生物学杂志), 2010, 27(6): 72–75, 102



[19]Feng Y, Xue Q Z. The serine carboxypeptidase like gene family of rice (Oryza sativa L. ssp. japonica). Funct Integr Genomic, 2006, 6: 14–24



[20]Arnold J N, Wormald M R, Sim R B. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol, 2007, 25: 21–50



[21]Fraser C M, Rider L W, Chapple C. An expression and bioinformatics analysis of the Arabidopsis serine carboxypeptidase-like gene family. Plant Physiol, 2005, 138: 1136–1148



[22]Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol, 1997, 115: 327–334



[23]Abe H, Urao T, Ito T, Seki M, Shinozaik K, Yamaguchi-Shinozaki K. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell, 2003, 15: 63–78

[1] 崔连花, 詹为民, 杨陆浩, 王少瓷, 马文奇, 姜良良, 张艳培, 杨建平, 杨青华. 2个玉米ZmCOP1基因的克隆及其转录丰度对不同光质处理的响应[J]. 作物学报, 2022, 48(6): 1312-1324.
[2] 周慧文, 丘立杭, 黄杏, 李强, 陈荣发, 范业赓, 罗含敏, 闫海锋, 翁梦苓, 周忠凤, 吴建明. 甘蔗赤霉素氧化酶基因ScGA20ox1的克隆及功能分析[J]. 作物学报, 2022, 48(4): 1017-1026.
[3] 袁大双, 邓琬玉, 王珍, 彭茜, 张晓莉, 姚梦楠, 缪文杰, 朱冬鸣, 李加纳, 梁颖. 甘蓝型油菜BnMAPK2基因的克隆及功能分析[J]. 作物学报, 2022, 48(4): 840-850.
[4] 黄成, 梁晓梅, 戴成, 文静, 易斌, 涂金星, 沈金雄, 傅廷栋, 马朝芝. 甘蓝型油菜BnAPs基因家族成员全基因组鉴定及分析[J]. 作物学报, 2022, 48(3): 597-607.
[5] 谢琴琴, 左同鸿, 胡燈科, 刘倩莹, 张以忠, 张贺翠, 曾文艺, 袁崇墨, 朱利泉. 甘蓝自交不亲和相关基因BoPUB9的克隆及表达分析[J]. 作物学报, 2022, 48(1): 108-120.
[6] 余慧芳, 张卫娜, 康益晨, 范艳玲, 杨昕宇, 石铭福, 张茹艳, 张俊莲, 秦舒浩. 马铃薯CrRLK1Ls基因家族的鉴定及响应晚疫病菌信号的表达分析[J]. 作物学报, 2022, 48(1): 249-258.
[7] 荐红举, 尚丽娜, 金中辉, 丁艺, 李燕, 王季春, 胡柏耿, Vadim Khassanov, 吕典秋. 马铃薯PIF家族成员鉴定及其对高温胁迫的响应分析[J]. 作物学报, 2022, 48(1): 86-98.
[8] 黄兴, 习金根, 陈涛, 覃旭, 谭施北, 陈河龙, 易克贤. 剑麻苯丙氨酸裂解酶基因的鉴定及表达分析[J]. 作物学报, 2021, 47(6): 1082-1089.
[9] 唐锐敏, 贾小云, 朱文娇, 印敬明, 杨清. 马铃薯热激转录因子HsfA3基因的克隆及其耐热性功能分析[J]. 作物学报, 2021, 47(4): 672-683.
[10] 岳洁茹, 白建芳, 张风廷, 郭丽萍, 苑少华, 李艳梅, 张胜全, 赵昌平, 张立平. 杂交小麦抗坏血酸过氧化物酶基因克隆及其在种子老化中的潜在功能分析[J]. 作物学报, 2021, 47(3): 405-415.
[11] 孟钰玉, 魏春茹, 范润侨, 于秀梅, 王逍冬, 赵伟全, 魏新燕, 康振生, 刘大群. 小麦TaPP2-A13基因的表达响应逆境胁迫并与SCF复合体接头蛋白TaSKP1相互作用[J]. 作物学报, 2021, 47(2): 224-236.
[12] 杨琴莉, 杨多凤, 丁林云, 赵汀, 张军, 梅欢, 黄楚珺, 高阳, 叶莉, 高梦涛, 严孙艺, 张天真, 胡艳. 棉花花器官突变体的鉴定及候选基因的克隆[J]. 作物学报, 2021, 47(10): 1854-1862.
[13] 何潇, 刘兴, 辛正琦, 谢海艳, 辛余凤, 吴能表. 半夏PtPAL基因的克隆、表达与酶动力学分析[J]. 作物学报, 2021, 47(10): 1941-1952.
[14] 左同鸿, 张贺翠, 刘倩莹, 廉小平, 谢琴琴, 胡燈科, 张以忠, 王玉奎, 白晓璟, 朱利泉. 甘蓝自交不亲和性相关基因BoGSTL21的克隆与表达分析[J]. 作物学报, 2020, 46(12): 1850-1861.
[15] 王慧敏,李新国,万书波,张智猛,丁红,李国卫,高文伟,彭振英. 花生膜联蛋白基因家族成员的结构和表达分析[J]. 作物学报, 2019, 45(3): 390-400.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!