作物学报 ›› 2013, Vol. 39 ›› Issue (01): 172-176.doi: 10.3724/SP.J.1006.2013.00172
文明富,胡梅珍,陈新,王海燕,卢诚,王文泉*
WEN Ming-Fu,HU Mei-Zhen,CHEN Xin,WANG Hai-Yan,LU Cheng,WANG Wen-Quan*
摘要:
选用8个木薯品种(系)调查和评价储藏根采后3、7、12、17和27 d贮藏保鲜过程,发现其耐贮存性从高至低依次为SMH、BRA755、SC205、SC5、BRA440、7G-2、T1和BRA258。利用线性回归分析表明,木薯储藏根贮存变质抗性与干物质含量呈负相关,相关系数r为0.687 (P=0.05);与淀粉率含量呈负相关,相关系数r为0.696 (P=0.05);与储藏根氢氰酸(HCN)含量无相关性。其中SMH贮存变质抗性最强,储藏根干物质和淀粉含量最低;BRA258和T1贮存变质抗性最差,干物质和淀粉含量最高,因此这3个木薯品种(系)在育种上具有较高的利用价值。
[1]Rogers D, Appan S. Flora Neotropica Monograph. New York: Hafner Press, 1973[2]Nassar N M A, Hashimoto D Y C, Fernandes S D C. Wild Manihot species: botanical aspects, geographic distribution and economic value. Genet Mol Res, 2008, 7: 16–28[3]El-Sharkawy M A. Cassava biology and physiology. Plant Mol Biol, 2004, 56: 481–501[4]Yu S, Tao J. Energy efficiency assessment by life cycle simulation of cassava-based fuel ethanol for automotive use in Chinese Guangxi context. Energy, 2009, 34: 22–31[5]Jansson C, Westerbergh A, Zhang J M, Hu X W, Sun C X. Cassava, a potential biofuel crop in (the) People’s Republic of China. Appl Energy, 2009, 86: 95–99[6]Plumbley R A, Rickard J E. Post-harvest physiological deterioration of cassava. Trop Sci, 1991, 31: 295–303[7]Tanaka Y, Data E S, Hirose S, Taniguchi T, Uritani I. Biochemical-changes in secondary metabolites in wounded and deteriorated cassava roots. Agric Biol Chem, 1983, 47: 693–700[8]Wheatley C C, Schwabe W W. Scopoletin involvement in post-harvest physiological deterioration of cassava root (Manihot esculenta Crantz). J Exp Bot, 1985, 36: 783–791[9]Buschmann H., Rodriguez M X, Tohme J, Beeching J R. Accumulation of hydroxycoumarins during post-harvest deterioration of tuberous roots of cassava (Manihot esculenta Crantz). Ann Bot, 2000, 86: 1153–1160[10]Rudi N, Norton G, Alwang J, Asumugha G. Economic impact analysis of marker-assisted breeding for resistance to pests and post-harvest deterioration in cassava. Afric J Agric Res, 2010, 14(2): 110–122[11]Van Oirschot Q E A, O’Brien G M, Dufour D, El-Sharkawy M A, Mesa E. The effect of pre-harvest pruning of cassava upon root deterioration and quality characteristics. J Sci Food Agric, 2000, 80: 1866–1873[12]Ceballos H, Fregene M, Pérez J C, Morante N, Calle F. Cassava genetic improvement. In: Kang M S, Priyadarshan P M, eds. Breeding Major Food Staples. Ames, IA, US: Blackwell Publishing, 2007. pp 365–391[13]Wheatley C, Lozano C, Gomez G. Post-harvest deterioration of cassava roots. In: Cock J H, Reyes J A, eds. Cassava: Research, Production and Utilization. Cali, Colombia, UNDP-CIAT, 1985. pp 655–671[14]Gu Z-B(顾正彪), Hong Y(洪雁), Zhang Y-P(张燕萍), Chen H-X(陈洪兴), Zhong L-M(钟立满), Li Z-F(李兆丰), Zhou X-Y(周心怡). GB/T 20378-2006. Native Starch-Determination of Starch Content-Ewers Polarimetric Method (原淀粉-淀粉含量的测定-旋光法). ISO 10520:1997 (in Chinese)[15]Steel R G D, Torrie J H. Principles and Procedures of Statistics. New York: McGraw-Hill, 1960[16]SAS. SAS/STAT 9.1 User’s Guide. Cary, NC: SAS Inst, 2008[17]Reilly K, Gomez-Vasquez R, Buschmann H, Tohme J, Beeching J R. Oxidative stress responses during cassava postharvest physiological deterioration. Plant Mol Biol, 2003, 53: 669–685[18]Buschmann H, Reilly K, Rodriguez M X, Tohme J, Beeching J R. Hydrogen peroxide and flavan-3-ols in storage roots of cassava (Manihot esculenta Crantz) during postharvest deterioration. J Agric Food Chem, 2000, 48: 5522–5529[19]Huang J, Bachem C, Jacobsen E, Visser R G F. Molecular analysis of differentially expressed genes during postharvest deterioration in cassava (Manihot esculenta Crantz) tuberous roots. Euphytica, 2001, 120: 85–93[20]Morante N, Sánchez T, Ceballos H, Calle F, Pérez J C, Egesi C, Cuambe C E, Escobar A F, Ortiz D, Chávez A L, Fregene M. Tolerance to postharvest physiological deterioration in cassava roots. Crop Sci, 2009, 50: 1333–1339[21]Chavez A L, Bedoya J M, Sánchez T, Iglesias C, Ceballos C, Roca W. Iron, carotene, and ascorbic acid in cassava roots and leaves. Food Nutr Bull, 2000, 21: 410–413 |
[1] | 孙倩, 邹枚伶, 张辰笈, 江思容, Eder Jorge de Oliveira, 张圣奎, 夏志强, 王文泉, 李有志. 基于SNP和InDel标记的巴西木薯遗传多样性与群体遗传结构分析[J]. 作物学报, 2021, 47(1): 42-49. |
[2] | 邓昌哲,姚慧,安飞飞,李开绵,陈松笔. 木薯块根有色体分离及其蛋白质组学的研究[J]. 作物学报, 2017, 43(09): 1290-1299. |
[3] | 于晓玲,阮孟斌,王斌,杨义伶,王树昌*,彭明*. 木薯转录因子基因MeHDZ14的克隆与分析[J]. 作物学报, 2017, 43(08): 1181-1189. |
[4] | 罗俊杰,欧巧明,叶春雷,王方,王镛臻,陈玉梁. 重要胡麻栽培品种的抗旱性综合评价及指标筛选[J]. 作物学报, 2014, 40(07): 1259-1273. |
[5] | 黄巧义,唐拴虎,陈建生,张发宝,解开治,黄旭,蒋瑞萍,李苹. 木薯物质累积特征及其施肥效应研究[J]. 作物学报, 2013, 39(01): 126-132. |
[6] | 齐兰,王文泉,张振文,叶剑秋,李开绵. 利用SRAP标记构建18个木薯品种的DNA指纹图谱[J]. 作物学报, 2010, 36(10): 1642-1648. |
[7] | 罗兴录;岑忠用;谢和霞;张平刚;莫凡;潘英华;陆飞伍. 不同木薯品种抗衰老生理与淀粉积累特性研究[J]. 作物学报, 2007, 33(06): 1018-1024. |
[8] | 王新超;杨亚军;陈亮;阮建云. 茶树氮素利用效率相关生理生化指标初探[J]. 作物学报, 2005, 31(07): 926-931. |
[9] | 冯义军;张天真;潘家驹. 哈克尼西棉雄性不育细胞质对杂种一代某些生理生化指标的影响[J]. 作物学报, 1993, 19(01): 17-22. |
|