欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (01): 158-164.doi: 10.3724/SP.J.1006.2011.00158

• 耕作栽培·生理生化 • 上一篇    下一篇

不同贮藏条件下小麦和玉米种子的水分变化规律及其建模验证

王婧,李晓丽**,姜朋,田凤龙,侯文倩,孙庆泉*   

  1. 山东农业大学农学院 / 作物生物学国家重点实验室 / 山东省作物生物学重点实验室,山东泰安271018
  • 收稿日期:2010-05-30 修回日期:2010-09-23 出版日期:2011-01-12 网络出版日期:2010-11-16
  • 基金资助:

    本研究由山东省优秀中青年科学家奖励基金(2005BS06010), 国家重点基础研究发展计划(973计划)项目(2006CB101700)和山东省良种工程产业化项目(鲁农粮种字[2008]6号)基金资助。

Moisture Variation and Model Verification of Wheat and Maize Seeds under Different Storage Conditions

WANG Jing,LI Xiao-Li**,JIANG Peng,TIAN Feng-Long,HOU Wen-Qian,SUN Qing-Quan*   

  1. Agronomy College of Shandong Agricultural University / National Key Laboratory of Crop Biology / Shandong Key Laboratory of Crop Biology, Tai’an 271018, China
  • Received:2010-05-30 Revised:2010-09-23 Published:2011-01-12 Published online:2010-11-16

摘要: 种子平衡水分(EMC)是评价种子吸湿或解吸动态变化的重要指标。本研究以不同初始水分(IMC)小麦和玉米种子为试材,研究了不同贮藏条件下的吸湿解吸规律,并建模验证。结果表明,玉米种子在8.0%IMC、15℃、相对湿度(RH)<18.8%, 25°C或40℃和RH<48.1%条件下; 以及在13.5%IMC或18.0%IMC、15°C、25°C或40℃、RH<48.1%条件下呈解吸变化; 而在其他条件下均呈吸湿变化。小麦种子在贮温15、25和40℃时,8.0%IMC在RH≤18.8%、18.0%IMC在RH≤48.1%时解吸,其他条件下吸湿; 13.5%IMC在15℃和RH<48.1%以及25、40℃和RH<18.8%时解吸,其他条件下吸湿。小麦种子在15℃和RH=53.0%、25℃和RH=48.0%以及40℃和RH=43.0%时的安全水分(SWC)依次为13%、11%和9%; 玉米种子在15℃和RH=55.0%、25℃和RH=50.0%以及40℃和RH=40.0%时,其SWC依次为14%、12%和9%。小麦种子EMC在15℃和RH>50.0%、25℃和RH>50.0%、40℃和RH>48.0%时超过其对应条件下的SWC; 玉米种子EMC在15℃和RH>50.0%、25℃和RH>47.0%以及40℃和RH>47.0%时超过其对应条件下的SWC。玉米郑单958的平衡时间(d)与IMC(x)、RH(y)和温度(z)的预测模型为d = 35.34 + 4.32x - 0.28y - 0.35z - 0.031xy - 0.012xz - 0.0011yz + 0.003y2,农大108为d = 39.76 + 2.35x - 0.39y - 0.27z - 0.022xy - 0.014xz - 0.0057yz + 0.008y2,小麦山农15为d = 25.69 + 7.65x - 0.27y - 0.89z - 0.12xy - 0.07xz - 0.007yz + 0.006y2+ 0.04z2,泰农18为d = 46.67 + 0.39x - 0.28y - 1.72z - 0.006yz + 0.006y2+ 0.017z2。模型经验证,预测性良好。

关键词: 小麦种子, 玉米种子, 吸湿解吸, 建模, 模型验证

Abstract: Seed equilibrium moisture is an important indicator for evaluating the dynamic changes of seed moisture absorption or moisture desorption. The laws of the seed moisture absorption or moisture desorption under different storage conditions were studied using two maize (Zea mays L.) cultivars and two wheat (Triticum aestivum L.) cultivars with different initial moisture contents (IMC). Simulated models were established accordingly for each cultivar and verified with independent data. The moisture desorption was observed in 8.0% IMC maize seeds under the conditions of 15°C and RH < 18.8%, 25°C and RH < 48.1%, 40°C and RH < 48.1%; or in 13.5% and 18.0% IMC seeds under the conditions of 15°C and RH < 48.1%, 25°C and RH < 48.1%, 40°C and RH < 48.1%; and moisture absorption was observed under other storage conditions. Wheat seeds stored under 15°C, 25°C, and 40°C showed moisture desorption when RH ≤ 18. 8% for 8.0% IMC seeds or RH ≤ 48.1% for 18.0% IMC seeds; the 13.5% IMC seeds stored under the conditions of 25°C and RH < 18.8%, 25°C and RH < 18.8%, 40°C and RH < 18.8% showed moisture desorption; and wheat seeds stored under other storage conditions presentedmoisture absorption. The safe water contents (SWCs) of wheat seed were 13% under 15°C and RH = 53.0%, 11% under 25°C and RH = 48.0%, and 9% under 40°C and RH = 43.0%. The SWCs of maize seed were 14% under 15°C and RH = 55.0%, 12% under 25°C and RH = 50.0%, and 9% under 40°C and RH = 40.0%. The equilibrium moisture contents (EMCs) of wheat seed were higher than the corresponding SWCs under the same condition of 15°C and RH > 50.0%, 25°C and RH > 50.0%, 40°C and RH > 48.0%, and the equilibrium moisture contents (EMCs) of maize seed were higher than the corresponding SWCs under the same condition of 15°C and RH > 50.0%, 25°C and RH > 50.0%, 40°C and RH > 47.0%. The predictive models of equilibrium time (d) for seeds were simulated on the basis of IMC (x), RH (y), and temperature (z). The equations were as follows: d = 35.34 + 4.32x - 0.28y - 0.35z -0.031xy - 0.012xz - 0.0011yz + 0.003y2 for maize cultivar Zhengdan 958, d = 39.76 + 2.35x - 0.39y - 0.27z - 0.022xy - 0.014xz - 0.0057yz + 0.008y2 for maize cultivar Nongda 108, d = 25.69 + 7.65x - 0.27y - 0.89z - 0.12xy - 0.07xz - 0.007yz + 0.006y2+ 0.04z2 for wheat cultivar Shannong 15, and d = 46.67 + 0.39x - 0.28y - 1.72z - 0.006yz + 0.006y2+ 0.017z2 for wheat cultivar Tainong 18. The predictive values based on these models were highly consistent with the tested values, indicating the good applicabilities of these models.

Key words: Wheat seed, Maize seed, Moisture absorption or moisture desorption, Modeling, Model verification

[1]Sun H-M(孙红梅), Xin H(辛霞), Lin J(林坚), Wang X-F(王晓峰), Jing X-M(景新明). Effect of temperature on optimum moisture content of stored maize seeds. Sci Agric Sin (中国农业科学), 2004, 37(5): 656–662 (in Chinese with English abstract)
[2]Zhang Y-R(张玉荣), Wen J-P(温纪平), Zhou X-Q(周显青). Study on changes of grain quality in different storage temperature. Grain Storage (粮食贮藏), 2003, (3): 7–10 (in Chinese with English abstract)
[3]Yang L-Q(杨林青), Niu Z-Y(牛智有). Fitting model research of red data equilibrium content. Trans CASE (农业工程学报), 1993, 9(3): 92–97 (in Chinese with English abstract)
[4]Hu K(胡坤), Zhang J-N(张家年). Studies on the factors affecting the adsorption and desorption isotherms of rice. Cereal Feed Ind (粮食饲料与工业), 2004, (10): 30–33 (in Chinese with English abstract)
[5]Murats S, Tanaka F, Hori Y. Effect of initial moisture on the adsorption and desorption equilibrium moisture contents of polished rice. J Faculty Agric, 1993, 38: 161–173
[6]Murats S, Tanaka F. Measurement of the adsorption equilibrium moisture content of polished rice: effect of initial moisture content on adsorption equilibrium moisture content. J Jpn Soc Agric Machinery, 1995, 57(6): 45–52
[7]Liu M-H(刘木华), Cao C-W(曹崇文). Model of safe drying temperature for paddy rice seed. Trans CASE (农业工程学报), 2003, 19(3): 174–177 (in Chinese with English abstract)
[8]Peng G L, Chen X G, Wang Z G, Wu W F. Experimental study on effect of NaCl on equilibrium moisture content of maize. Trans CSAE, 2003, 19: 182–185
[9]Mohamed L A, Kouhila M, Lahsasni S. Equilibrium moisture content and heat of sorption of gelidium sesquipedale. J Stored Prod Res, 2005, 41: 199–209
[10]Wen Y-X(文友先), Zhang J-N(张家年), Liu J-Y(刘俭英), Zhao Z-F(赵章风), Chen H-T(陈海涛). Using the computer software to construct sorption isotherms. Trans Agric Machinery (农业机械学报), 1998, 29(3): 79–83 (in Chinese with English abstract)
[11]Jowitt R, Escher F. Physical properties of foods. London: Science Publishers, 1983. pp 45–53
[12]Hu K(胡坤), Zhang J-N(张家年). Selection of fitting models of adsorption and desorption isotherms of rice and optimization of their parameters. Trans CASE (农业工程学报), 2006, 22(1): 153–156 (in Chinese with English abstract)
[13]Sun D W. Comparison and selection of EMC/ERH isotherm equation for rice. J Stored Prod Res, 1999, 35: 249–264
[14]Zhong J(钟军), Zheng Z(郑卓), Zhi X-D(智旭丹). Mathematical model of multifactor combination on tissue culture for stylosanthes cotyledon. Acta Agron Sin (作物学报), 2008, 34(3): 534–538 (in Chinese with English abstract)
[15]Reddy B S, Chakraverty A. Equilibrium moisture characteristics of raw and parboiled paddy, brown rice, and bran. Drying Techanol, 2004, 22: 837–851
[16]Di J-C(狄佳春), Chen X-S(陈旭升), Xu N-Y(许乃银), Xiao S-H(肖松华), Liu J-G(刘剑光). The rapid determination of cotton seed moisture. Seed(种子), 2001, (4): 69–70 (in Chinese)
[17]Wang J(王婧), Jiang P(姜朋), Li D(李栋), Ma Q(马强), Tai S-J(台述金), Sun Q-Q(孙庆泉). Moisture variation and modeling of cotton and soybean seeds under different storage conditions. Acta Agron Sin (作物学报), 2010, 36(7): 1161–1168 (in Chinese with English abstract)
[18]Hui D-F(惠大丰). SAS Software Practical Statistical Analysis System (统计分析系统SAS软件实用教程). Beijing: Beihang University Press, 1996. pp 74–83 (in Chinese)
[19]Liu G-S(刘国顺), Chen Y-Q(陈义强), Wang F(王芳), Ling A-F(凌爱芬), Xi H-A(习红昂). Effects of nitrogen phosphorus potassium and water on lutein in tobacco leaves. Acta Agron Sin (作物学报), 2008, 34(4): 690–699 (in Chinese with English abstract)
[20]Hua G-D(华国栋), Li G-X(李冠喜), Pu H-C(浦汉春), Wang D-M(王多明), Xiang H(相华). Influencing factors and control techniques on wheat seed vitality and its storage technique. Crops (作物杂志), 2009, (6): 89–91 (in Chinese with English abstract)
[21]Sun Q(孙群), Hu J(胡晋), Sun Q-Q(孙庆泉). Seed Processing and Storage (种子加工与贮藏). Beijing: Higher Education Press, 2008. pp 243–249 (in Chinese)
[1] 伍少云, 周国雁. 中期种质库贮藏下真空和非真空包装普通小麦种子的衰老特性及寿命差异[J]. 作物学报, 2011, 37(06): 1109-1115.
[2] 王婧,姜朋,李栋,马强,台述金,左振朋,董鲁浩,孙庆泉. 不同贮藏条件下棉花和大豆种子的水分变化规律及其预测模型[J]. 作物学报, 2010, 36(07): 1161-1168.
[3] 孙永刚;凌腾芳;王家杰;徐晟;宣伟;汤国辉;沈文飚. 外源一氧化氮供体硝普钠对小麦种子萌发早期β-淀粉酶及其亚细胞分布的影响[J]. 作物学报, 2008, 34(09): 1608-1614.
[4] 王海华;蒋明义;康健;汪琼. 低浓度镍处理下玉米种子的萌发与活性氧代谢的关系[J]. 作物学报, 2003, 29(04): 601-605.
[5] 陈剑; 倪丕冲; 李梅芳; 陈屹; 黄卓忠. 基于遗传分布模型预测水稻杂交后代性状分布[J]. 作物学报, 1991, 17(03): 178-184.
[6] 孙兰珍; 郑是琳; 高庆荣; 张延传. 小麦种子黑胚对发芽的影响及病原菌鉴定的研究[J]. 作物学报, 1989, 15(04): 362-368.
[7] 宋同明. 脉冲核磁共振仪(Pulsed NMR)对作物种子含油量的快速测定[J]. 作物学报, 1989, 15(02): 160-166.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!