欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (08): 1441-1448.doi: 10.3724/SP.J.1006.2011.01441

• 耕作栽培·生理生化 • 上一篇    下一篇

混合实验仪参数与和面仪、快速黏度仪参数的关系及其对面条品质的影响

张艳1,唐建卫2,Geoffroy D’HUMIERES 3,何中虎1,4,*   

  1. 1中国农业科学院作物科学研究所 / 国家小麦改良中心 / 农业部作物遗传育种重点实验室,北京100081;2河南省周口市农业科学院,河南周口 466001;3 Chopin Technologies, Villeneuve-la-Garenne Cedex 92396, France; 4国际玉米小麦改良中心(CIMMYT)中国办事处,北京 100081
  • 收稿日期:2011-01-04 修回日期:2011-04-27 出版日期:2011-08-12 网络出版日期:2011-06-13
  • 基金资助:

    本研究由引进国际先进农业科学技术计划(948计划)重大国际合作项目(2006-G2)和现代农业产业技术体系建设专项资金资助。

Correlation between Mixolab Parameter and Mixograph and RVA Parameters and Its Effect on Noodle Quality

ZHANG Yan1,Tang Jian-Wei2,Geoffroy D’HUMIERES3,HE Zhong-Hu1,4,*   

  1. 1 Institute of Crop Sciences, Chinese Academy of Agricultural Sciences / National Wheat Improvement Center, Beijing 100081, China; 2 Zhoukou Academy of Agricultural Sciences, Zhoukou 466001, China; 3 Chopin Technologies, Villeneuve-la-Garenne Cedex 92396, France; 4 CIMMYT China Office, Beijing 100081, China
  • Received:2011-01-04 Revised:2011-04-27 Published:2011-08-12 Published online:2011-06-13

摘要: 快速准确的评价方法对面条品质遗传改良至关重要。法国肖邦公司(Chopin Technologies, France)最新推出的Mixolab分析仪可以同时测定面粉加水后恒温揉混及面团升温后蛋白质弱化和淀粉糊化特性,明确其与现有类似仪器如和面仪和快速黏度测试仪等的关系对小麦品质评价具有重要意义。利用混合实验仪、和面仪、快速黏度测试仪测定了60份小麦品种的有关参数,并对面条品质进行感官评价,分析了相关参数间的关系及预测面条品质的可靠性。结果表明,可以用混合实验仪的稳定时间很好地预测和面仪参数峰值曲线面积、峰值时间和8 min带宽,可分别解释其变异的75.7%、74.6%和56.5%;混合实验仪的C3值、C4值、C5值和吸水率是预测淀粉糊化特性的重要参数,C3值、C4值和C5值与峰值黏度、低谷黏度和最终黏度的相关系数在0.57~0.62之间,吸水率与峰值黏度和最终黏度的相关系数分别是-0.62 (P < 0.01)和-0.55 (P < 0.01)。混合实验仪对面条色泽预测的准确性高达75.7%,但预测面条软硬度、黏弹性、光滑性等口感品质性状的准确性较低,只能解释变异的13.2%~30.5%,因此,面条口感质地特性还应以感官评价为主。

关键词: 混合实验仪, 和面仪, 快速黏度测试仪, 普通小麦, 面条品质

Abstract: It is critical to clarify the associations between the newly available Mixolab parameters and flour protein characteristics and starch pasting properties determined by Mixograph, Rapid Visco-Analyzer (RVA), and noodle quality. Sixty wheat lines derived from Zhou 8425B were used to measure parameters of Mixolab, Mixograph, RVA and noodle quality, and to determine the associations of parameters of Mixolab with these of Mixograph and RVA, and the reliability of predicting noodle quality using these parameters. The Mixograph midline peak integral, peak time, and widthat 8 min could be predicted by Mixolab stability, which accounted for 75.7%, 74.6%, and 56.5% of their variations, respectively. Mixolab parameters C3, C4, C5, and water absorption were important for predicting starch pasting properties. The correlation coefficients between C3, C4, and C5 of Mixolab and RVA peak viscosity, trough, and final viscosity ranged from 0.57 to 0.62. Water absorption of Mixolab was negatively correlated with peak viscosity (r = -0.62, P < 0.01) and final viscosity (r = -0.55, P < 0.01). Mixolab parameters explained 75.7% of the variation of noodle color, however, accounted for low percentages (13.2–30.5%) of the variations of noodle firmness, viscoelasicity, and smoothness. Thus, sensory evaluation method rather than various equipments should be adopted for determining noodle quality.

Key words: Mixolab, Mixograph, Rapid Visco-Analyzer, Common wheat, Noodle quality

[1]He Z H, Rajaram S, Xin Z Y, Huang G Z. A history of wheat breeding in China. Mexico, D.F.: CIMMYT. 2001
[2]Miskelly D M. Flour components affecting paste and noodle colour. J Sci Food Agric, 1984, 35: 463–471
[3]Baik B K, Czuchajowska Z, Pomeranz Y. Discoloration of dough for oriental noodles. Cereal Chem, 1995, 72: 198–205
[4]Baik B K, Lee M R. Effects of starch amylose content of wheat on textural properties of white salted noodles. Cereal Chem, 2003, 80: 304–309
[5]Batey I L, Curtin B M, Moore S A. Optimization of rapid-visco analyser test conditions for predicting Asian noodle quality. Cereal Chem, 1997, 74: 497–501
[6]Zhang P P, He Z H, Zhang Y, Xia X X, Liu J J, Yan J, Zhang Y. Pan bread and Chinese white salted noodle qualities of Chinese winter wheat cultivars and their relationship with gluten protein fractions. Cereal Chem, 2007, 84: 370–378
[7]Zhang Y, Nagamine T, He Z H, Ge X X, Yoshida H, Peña R J. Variation in quality traits in common wheat as related to Chinese fresh white noodle quality. Euphytica, 2005, 141:113–120
[8]Liu J-J(刘建军), He Z-H(何中虎), Yang J(杨金), Xu Z-H(徐兆华), Liu A-F(刘爱峰), Zhao Z-D(赵振东). Variation of starch properties in wheat cultivars and their relationship with dry white Chinese noodle quality. Sci Agric Sin (中国农业科学), 2003, 36(1): 7–12 (in Chinese with English abstract)
[9]Liu J J, He Z H, Zhao Z D, Peña R J, Rajaram S. Wheat quality traits and quality parameters of cooked dry white Chinese noodle. Euphytica, 2003, 131:147–154
[10]He Z H, Yang J, Zhang Y, Quail K J, Pena R J. Pan bread and dry white Chinese noodle quality in Chinese winter wheats. Euphytica, 2004, 139: 257–267
[11]Bonet A, Blaszczak W, Rosell C M. Formation of homopolymers and heteropolymers between wheat flour and several protein sources by transglutaminase-catalyzed cross-linking. Cereal Chem, 2006, 83: 655–662
[12]Colllar C, Bollain C, Rosell C M. Rheological behaviour of formulated bread doughs during mixing and heating. Food Sci Technol Intl, 2007, 13: 99
[13]Zhang Y(张艳), Wang Y-F(王彦飞), Chen X-M(陈新民), Wang D-S(王德森), Humieres G D, Feng J-J(冯建军), He Z-H(何中虎). Relationship of Mixolab parameters with Farinograph, Extensograph parameters, and bread-making quality. Acta Agron Sin (作物学报), 2009, 35 (9): 1738–1743 (in Chinese with English abstract)
[14]Ozturk S, Kahraman K, Tiftik B, Koksel H. Predicting the cookie quality of flours by using Mixolab. Eur Food Res Technol, 2008, 227: 1549–1554
[15]Kahraman K, Sakiyan O, Ozturk S, Koksel H, Sumnu G, Dubat A. Utilization of Mixolab to predict the suitability of flours in terms of cake quality. Eur Food Res Technol, 2008, 227: 565–570
[16]Zhang Y(张艳), Yan J(阎俊), Yoshida H, Wang D-S(王德森), Chen D-S(陈东升), Nagamine T, Liu J-J(刘建军), He Z-H(何中虎). Standardization of laboratory processing of Chinese white salted noodle and its sensory evaluation system. J Triticeae Crops (麦类作物学报), 2007, 27(10): 158–165 (in Chinese with English abstract)
[17]Gilmour A R, Cullis B R, Verbyla A P. Accounting for natural and extraneous variation in the analysis of field experiments. J Agric, Biol Environ Stat, 1997, 2: 269–293
[18]Zhang Y(张勇), He Z-H(何中虎), Wu Z-L(吴振录), Zhang A-M(张爱民), Ginkel M V. Adaptation of CIMMYT wheat germplasm in China’s spring wheat regions. Sci Agric Sin (中国农业科学), 2006, 39: 655–663 (in Chinese with English abstract)
[19]Rath C R, Gras P W, Wrigly C W, Waker C E. Evaluation of dough properties from 2 grams of flour using the Mixograph principle. Cereal Foods World, 1990, 35: 572−574
[20]Martinant J P, Nicolas Y, Bouguennec A. Relationships between Mixograph parameters and indices of wheat grain quality. J Cereal Sci, 1998, 27: 179−189
[21]Khatkar B S, Bell A E, Schofield J D A. Comparative study of the inter-relationships between Mixograph parameters and breadmaking qualities of wheat flours and glutens. J Sci Food Agric, 1996, 72: 71−85
[22]Walker C E, Ross A S, Wrigley C W, McMaster G J. Accelerated starch paste characterization with the Rapid Visco-Analyser. Cereal Foods World, 1988, 33: 491–493
[23]Hoseney R C. Principles of cereal science and technology. In: Cereal Proteins. American Association of Cereal Chemists, Inc., St. Paul, MN, 1986. pp 69–73
[24]Oh N H, Seib P A, Ward A B, Deyoe C W. Noodle. Influence of flour protein, extraction rate, particle size & starch damage on the quality characteristics. Cereal Chem, 1985, 62: 441–446
[25]He Z H, Liu L, Xia X C, Liu J J, Peña R J. Composition of HMW and LMW glutenin subunits and their effects on dough properties, pan bread, and noodle quality of Chinese bread wheats. Cereal Chem, 2005, 2: 345–350
[26]Zhang Y L, Wu Y P, Xiao Y G, He Z H, Zhang Y, Yan J, Zhang Y, Xia X X, Ma C X. QTL mapping for flour and noodle colour components and yellow pigment content in common wheat. Euphytica, 2009, 65: 435–444
[1] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[2] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[3] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[4] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[5] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705.
[6] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267.
[7] 肖永贵,Susanne DREISIGACKER,Claudia NU?EZ-RíOS,胡卫国,夏先春,何中虎. 基于FLUOstar平台的小麦dsDNA荧光定量与基因型分析[J]. 作物学报, 2017, 43(07): 947-953.
[8] 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838.
[9] 刘凯,邓志英,张莹,王芳芳,刘佟佟,李青芳,邵文,赵宾,田纪春*,陈建省*. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报, 2017, 43(04): 483-495.
[10] 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500.
[11] 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142.
[12] 孔欣欣,张艳,赵德辉,夏先春,王春平,何中虎. 北方冬麦区新育成优质小麦品种面条品质相关性状分析[J]. 作物学报, 2016, 42(08): 1143-1159.
[13] 刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春*,陈建省*. 利用高密度SNP 遗传图谱定位小麦穗部性状基因[J]. 作物学报, 2016, 42(06): 820-831.
[14] 李文爽,夏先春,何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法[J]. 作物学报, 2016, 42(05): 706-713.
[15] 岳爱琴,李昂,毛新国,昌小平,柳玉平,李润植,景蕊莲. 小麦果聚糖合成酶基因6-SFT-D多态性及其与6-SFT-A2的累加效应[J]. 作物学报, 2016, 42(01): 11-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!