欢迎访问作物学报,今天是

作物学报 ›› 2011, Vol. 37 ›› Issue (11): 1991-2000.doi: 10.3724/SP.J.1006.2011.01991

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

转苦瓜几丁质酶基因McCHIT1水稻及其稻瘟病抗性

张长伟1,2,凌英华1,桑贤春1,李平1,赵芳明1,杨正林1,李云峰1,方立魁1,何光华1,*   

  1. 1 西南大学 / 转基因植物与安全控制重庆市重点实验室,重庆400716;2 四川省农业科学院水稻高粱研究所,四川泸州646000
  • 收稿日期:2011-01-31 修回日期:2011-07-15 出版日期:2011-11-12 网络出版日期:2011-09-06
  • 基金资助:

    本研究由国家转基因生物新品种培育科技重大专项(2008ZX08001-002)和重庆市重大攻关项目(CSTC, 2010AA1019; CSTC, 2010AA1013)资助。

Transgenic Rice Lines Harboring McCHIT1 Gene from Balsam Pear (Momordica charantia L.) and Their Blast Resistance

ZHANG Chang-Wei1,2,LING Ying-Hua1,SANG Xian-Chun1,LI Ping1,ZHAO Fang-Ming1,YANG Zheng-Lin1,LI Yun-Feng1,FANG Li-Kui1,HE Guang-Hua1,*   

  1. 1 Chongqing Key Laboratroy of Application and Safety Control of Genetically Modified Crops, Southwest University, Chongqing 400716, China; 2 Rice and Sorghum Research Institute, Sichuan Academy of Agricultural Sciences, Luzhou 646000, China
  • Received:2011-01-31 Revised:2011-07-15 Published:2011-11-12 Published online:2011-09-06

摘要: 稻瘟病是危害水稻的最严重病害之一,探索利用外源基因提高水稻抗稻瘟病水平对现代育种具有重要意义。本研究从T2代起逐代增加抗性选择压,采用苗期人工混合接种和病圃田自然诱发等鉴定方法,对转基因水稻后代进行稻瘟病抗性鉴定和筛选,在T5代获得了7个稻瘟病抗性极显著增强的转McCHIT1基因水稻稳定株系。通过7个生理群26个生理小种的115个稻瘟病有效单孢菌株苗期抗谱测定,这7个株系的抗病频率为52.2%~61.4%,比受体对照缙恢35 (36.8%)高16个百分点以上,主要增加了对ZE群生理小种的抗性,提高了对ZG群、ZF群和优势种群ZB群生理小种的抗性。C36-2-1、C21-6-2、C21-3-1等3个株系的结实率达80%以上,是丰抗结合较好的转McCHIT1基因株系。McCHIT1基因具有广谱抗性,将其遗传转化水稻,采用“逐代增加选择压,抗中选抗”的方法,可筛选出稻瘟病抗性优良、抗谱明显拓宽、产量性状较好的转基因稳定株系。

关键词: 转基因水稻, McCHIT1, 稻瘟病, 抗性

Abstract: Rice blast is one of the most important diseases damaging rice. It is important to explore a novel way of improving blast resistance with introducing exogenous resistance genes in modern breeding. In the study, identification and screening of blast resistance in the transgenic rice offspring were conducted using methods of both seedling nursery artificial inoculationand natural infection in field nursery under the conditions of higher resistance selection pressure increased gradually from T2 generation. Seven stable and outstanding McCHIT1-transforming rice lines with the most significant blast resistance were obtained in T5 generation. Detected with 115 Magnaporthe grisea effective isolates from 26 physiological races belonging to seven groups, the resistance frequenciesfor the seven lines were 52.2–61.4%, with 16 percentage higher than those (36.8%) for the control Jinhui 35. Compared with the control, these lines increased the resistance to ZE race group, and improved the resistance to the races of group ZG and ZF as well as dominant group ZB. The McCHIT1-transforming rice lines C36-2-1, C21-6-2, and C21-3-1 were the better combination of higher yield and resistance with seed setting rate of over 80%. The McCHIT1 gene is a certain broad-spectrum resistance gene. The disease-resistant lines with both broad-spectrum resistance and better yield traits can be obtained effectively by introducing McCHIT1 gene under gradually increased selection pressure and screening excellent resistance from resistant lines.

Key words: Transgenic rice plants, Balsam pear class Ⅰchitinase gene (McCHIT1), Rice blast, Resistance

[1]Ou S H. Pathogen variability and host resistance in rice blast disease. Annu Rev Phytopathol, 1980, 18: 167-187
[2]Levy M, Correa-Victoria F J, Zeigler R S, Xu S, Hamer J E. Genetic diversity of the rice blast fungus in a disease nursery in Colombia. Phytopathology, 1993, 83: 1427-1433
[3]Lei C-L(雷财林), Wang J-L(王久林), Jiang W-R(蒋琬如), Ling Z-Z(凌忠专), George M L. Population structure and genetic variation of rice blast fungus in some rice-growing regions in northern China. Acta Phytopathol Sin (植物病理学报), 2002, 32(3): 219-226 (in Chinese with English abstract)
[4]Melchers L S, Stuiver M H. Novel genes for disease-resistance breeding. Plant Biol, 2000, 3: 147-152
[5]Gust A A, Brunner F, Nürnberger T. Biotechnological concepts for improving plant innate immunity. Curr Opin Biotechnol, 2010, 21: 204-210
[6]Gao B-D(高必达). Molecular biology of plant chitinases. J Hunan Agric Univ (湖南农业大学学报), 1996, 22(6): 587-602 (in Chinese with English abstract)
[7]Gao B-D(高必达). Strategy of chitinase gene transfer for plant disease control: Progress, problems and prospect. Prog Biotechnol (生物工程进展), 1999, 19(2): 21-28 (in Chinese with English abstract)
[8]Pei Y(裴炎), Yang X-Y(杨星勇), Lu X-F(卢晓风), Xia Y-X(夏玉先), Li X-B(李先碧). Immunoaffinity chromatography for purification of momordica charantia chitinase. Chin J Biochem Mol Biol (中国生物化学与分子生物学报), 1999, 15(6): 953-956 (in Chinese with English abstract)
[9]Luo X-Y(罗小英), Zeng X-J(曾雪嘉), Xiao Y-H(肖月华), Luo M(罗明), Yang X-Y(杨星勇), Pei Y(裴炎). Overexpression of anti-microbial peptide genes and a chitinase gene in transgenic tobacco enhances resistance to Phytophthora parasitica var nicotianae and Alternaria alternate. Acta Phytopathol Sin (植物病理学报), 2005, 35(3): 249-255 (in Chinese with English abstract)
[10]Kong Z(孔政), Zhao D-G(赵德刚). The combination of CHI and AFP genes introduced into ryegrass mediated by agrobacterium. Mol Plant Breed (分子植物育种), 2008, 6(2): 281-285 (in Chinese with English abstract)
[11]XiaoY H, Li X B, Yang X Y, Luo M, Hou L, Guo S H, Luo X Y, Pei Y. Cloning and characterization of a balsam pear class I chitinase gene (Mcchit1) and its ectopic expression enhances fungal resistance in transgenic plants. Biosci Biotechnol Biochem, 2007, 71(5): 1211-1219
[12]Li P, Pei Y, Sang X C, Ling Y H, Yang Z L, He G H. Transgenic indica rice expressing a bitter melon (Momordica charantia) class I chitinase gene (McCHIT1) confers enhanced resistance to Magnaporthe grisea and Rhizoctonia solani. Eur J Plant Pathol, 2009, 125: 533-543
[13]Huang F(黄富), Cheng K-L(程开禄), Peng G-L(彭国亮), Luo Q-M(罗庆明), Chen G-H(陈国华), Zhu Y-C(朱永昌). The standard evaluating system of rice resistance to blast in Sichuan province. J China Agric Univ (中国农业大学学报), 1998, 3(suppl): 22-26 (in Chinese with English abstract)
[14]International Rice Research Institute. Standard Evaluation System for Rice(SES). Los Banos, Philippines: IRRI, 2002. pp 14-18
[15]Jefferson R A. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep, 1987, 5: 387-405
[16]All China Coorporation of Research on Physiological Races of Pyricularia oryzae (全国稻瘟病生理小种联合试验组). Research on physiological races of rice blast fungus in China. Acta Phytopathol Sin (植物病理学报), 1980, 10(2): 71-82 (in Chinese with English abstract)
[17]Gai J-Y(盖钧镒). Field Experiment and Statistical Method (试验统计方法), 2nd edn. Beijing: China Agriculture Press, 2000. pp 35-126, 157-179 (in Chinese)
[18]Feng D-R(冯道荣), Xu X-P(许新萍), Fan Q(范钦), Li B-J(李宝健), Lei C-L(雷财林), Ling Z-Z(凌忠专). Rice plants of multiple transgenes for resistance to rice blast and sheath blight diseases. Acta Agron Sin (作物学报), 2001, 27(3): 293-300 (in Chinese with English abstract)
[19]Zhu H-C(朱华晨), Xu X-P(许新萍), Xiao G-Y(肖国樱), Yuan L-P(袁隆平), Li B-J(李宝健). Using four valence disease-resistant genes improve the resistance of super hybrid rice. Sci China (Ser C: Life Sci) (中国科学C辑: 生命科学), 2006, 36(4): 320-327 (in Chinese)
[20]Nishizawa Y, Nishio Z, Nakazono K, Soma M, Nakajima E, Ugaki M, Hibi T. Enhanced resistance to blast (Magnaporthe grisea) in transgenic japonica rice by constitutive expression of rice chitinase. Theor Appl Genet, 1999, 99: 383-390
[21]Liu M(刘梅), Qin H-T(覃宏涛), Sun Z-X(孙宗修), Xu T(徐同). Genetic stability and enhanced resistance of transgenic rice with ThEn-42 gene. J Agric Biotechnol (农业生物技术学报), 2003, 11(5): 444-449 (in Chinese with English abstract)
[22]Lin C-J(林春晶), Dong Y-S(董英山), Lin X-F(林秀峰), Wang J-C(王继春), Tian W-Z(田文忠), Chu C-C(储成才). Primary studies on inheritance and expression of resistance to rice blast in transgenic rice. Mol Plant Breed (分子植物育种), 2006, 4(2): 167-173 (in Chinese with English abstract)
[23]Guo J-F(郭建夫), Huang Y-X(黄永相), Peng X-L(彭贤力), Yuan H-X(袁红旭), Jiang S-H(蒋世河), Xu X-P(许新萍), Zhang J-Z(张建中). Variation of non-target agronomic traits in the offspring of transgenic rice line E32 by particle bombardment. J Trop & Subtrop Bot (热带亚热带植物学报), 2007, 15(4): 284-289 (in Chinese with English abstract)
[24]Wu(吴刚), Cui H-R(崔海瑞), Shu Q-Y(舒庆尧), Ye C-Y(叶恭银), Xia Y-W(夏英武), Gao M-W(高明尉), Altosaar I, Li Y(李毅). The transcriptional silencing and temporal reactivation of crylAb in transgenic rice. Sci China (Ser C) (中国科学C辑), 2001, 31(6): 487-496 (in Chinese )
[25]Xie X-B(谢小波), Cui H-R(崔海瑞), Shen S-Q(沈圣泉), Wu D-X(吴殿星), Xia Y-W(夏英武), Shu Q-Y(舒庆尧). Studies on the distorted segregation of foreign genes in transgenic rice progenies. Acta Genet Sin (遗传学报), 2002, 29(11): 1005-1011 (in Chinese with English abstract)
[26]Yang Q-Y(杨祁云), Xu X-P(许新萍), Zhu X-Y(朱小源), Feng D-R(冯道荣), Li B-J(李宝健). Study on the blast resistance of transgenic rice plants with two antifungal protein genes. Acta Phytopathol Sin (植物病理学报), 2003, 33(2): 162-166 (in Chinese with English abstract)
[27]Ou S H. Rice Disease, 2nd edn. Kew, Surrey, England: Commonwealth Mycological Institute, 1985. pp 109-201
[28]Li H(李桦). Studies on relationships between various blast types of rice. Acta Phytophyl Sin (植物保护学报), 1991, 18(4): 293-297 (in Chinese with English abstract)
[29]Shi D(施德), Sun S-Y(孙潄沅), Shen Z-T(申宗坦). Preliminary studies on resistant reaction and resistant genetics of leaf blast and neck blast for various rice varieties. Acta Agric Zhejiangensis (浙江农业学报), 1989, 1(2): 94-96 (in Chinese)
[30]Peng H-J(彭洪江), Peng S-Z(彭仕钟), Wu X-L(吴先丽). Analysis of correlation between neck and leaf blast. Southwest China J Agric Sci (西南农业学报), 1995, (8)4: 79-83 (in Chinese with English abstract)
[31]Brogue K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais C J, Broglie R. Transgenic plant with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science, 1991, 254: 1194-1197
[32]Wang G-L(王关林), Fang H-J(方宏筠). Theory and Technology in Plant Gene Engineering (植物基因工程原理与技术). Beijing: Science Press, 1998. pp 15-18 (in Chinese)
[33]Datta K, Koukolíková-Nicola Z, Baisakh N, Oliva N, Datta S K. Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor Appl Genet, 2000, 100: 832-839
[34]Xu M-H(许明辉), Tang Z-S(唐祚舜), Tan Y-L(谭亚玲), Tian Y-C(田颖川), Li C-Y(李成云), Zhang S-H(张树华), Chen Z-H(陈正华), Tian W-Z(田文忠). A study on introduction of chitinase gene and β-1,3-Glucanase gene into restorer line of Dian-type hybrid rice (Oryza sativa L.) and enhanced resistance to blast (Magnaporthe grisea). Acta Genet Sin (遗传学报), 2003, 30(4): 330-334 (in Chinese with English abstract)
[35]Guo Y-S(郭玉双), Zhang Y-J(张艳菊), Zhu Y-M(朱延明), Li J(李杰), Bai X(柏锡), Zhang S-Z(张淑珍), Wu S-Y(吴书音), Li H-Y(李海燕). Obtainment of transgenic soybean plants with chitinase and ribosome inactivating protein genes and their resistance identification. Acta Agron Sin (作物学报), 2006, 32(12): 1841-1847 (in Chinese with English abstract)
[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 邓钊, 江南, 符辰建, 严天泽, 符星学, 胡小淳, 秦鹏, 刘珊珊, 王凯, 杨远柱. 隆两优与晶两优系列杂交稻的稻瘟病抗性基因分析[J]. 作物学报, 2022, 48(5): 1071-1080.
[3] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[4] 刘丹, 周彩娥, 王晓婷, 吴启蒙, 张旭, 王琪琳, 曾庆东, 康振生, 韩德俊, 吴建辉. 利用集群分离分析结合高密度芯片快速定位小麦成株期抗条锈病基因YrC271[J]. 作物学报, 2022, 48(3): 553-564.
[5] 杨昕, 林文忠, 陈思远, 杜振国, 林杰, 祁建民, 方平平, 陶爱芬, 张立武. 黄麻双生病毒CoYVV的分子鉴定和抗性种质筛选[J]. 作物学报, 2022, 48(3): 624-634.
[6] 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459.
[7] 习玲, 王昱琦, 朱微, 王益, 陈国跃, 蒲宗君, 周永红, 康厚扬. 78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测[J]. 作物学报, 2021, 47(7): 1309-1323.
[8] 左香君, 房朋朋, 李加纳, 钱伟, 梅家琴. 有毛野生甘蓝(Brassica incana)抗蚜虫特性研究[J]. 作物学报, 2021, 47(6): 1109-1113.
[9] 陈灿, 农保选, 夏秀忠, 张宗琼, 曾宇, 冯锐, 郭辉, 邓国富, 李丹婷, 杨行海. 广西水稻地方品种核心种质稻瘟病抗性位点全基因组关联分析[J]. 作物学报, 2021, 47(6): 1114-1123.
[10] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[11] 蒋伟, 潘哲超, 包丽仙, 周福仙, 李燕山, 隋启君, 李先平. 马铃薯资源晚疫病抗性的全基因组关联分析[J]. 作物学报, 2021, 47(2): 245-261.
[12] 张荣跃, 王晓燕, 杨昆, 单红丽, 仓晓燕, 李婕, 王长秘, 尹炯, 罗志明, 李文凤, 黄应昆. 甘蔗新品种及主栽品种对褐锈病抗性与Bru1基因分子检测[J]. 作物学报, 2021, 47(2): 376-382.
[13] 仓晓燕, 夏红明, 李文凤, 王晓燕, 单红丽, 王长秘, 李婕, 张荣跃, 黄应昆. 甘蔗优良品种(系)对黑穗病的抗性评价[J]. 作物学报, 2021, 47(11): 2290-2296.
[14] 陈同睿, 罗艳君, 赵潘婷, 贾海燕, 马正强. 过表达TaJRL53基因提高了小麦赤霉病抗性[J]. 作物学报, 2021, 47(1): 19-29.
[15] 崔静, 王志城, 张新雨, 柯会锋, 吴立强, 王省芬, 张桂寅, 马峙英, 张艳. 棉花GbSTK基因调控开花和黄萎病抗性的功能研究[J]. 作物学报, 2021, 47(1): 30-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!