欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1378-1386.doi: 10.3724/SP.J.1006.2012.01378

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

寒地多年生小麦的选育与细胞遗传学分析

赵海滨1,2,张延明1,2,史春龙1,闫小丹1,田超1,厉永鹏1,李集临1,*   

  1. 1哈尔滨师范大学生命科学与技术学院 / 黑龙江省分子细胞遗传与遗传育种重点实验室, 黑龙江哈尔滨 150025; 2黑龙江省农业科学院作物育种研究所, 黑龙江哈尔滨 150086
  • 收稿日期:2011-09-02 修回日期:2012-04-16 出版日期:2012-08-12 网络出版日期:2012-06-04
  • 通讯作者: 李集临, E-mail: jilinlee2004@yahoo.com.cn, Tel: 0451-88060576
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2011AA10010205), 黑龙江省博士后基金(LBH-Z10034), 黑龙江省高校科技创新团队研究计划, 哈尔滨师范大学科技创新团队研究计划(KJTD-2011-2)和哈尔滨师范大学青年学术骨干资助计划项目(KGB200918)资助。

Development and Cytogenetic Analysis of Perennial Wheat in Cold Region

ZHAO Hai-Bin1,2,ZHANG Yan-Ming1,2,SHI Chun-Long1,YAN Xiao-Dan1,TIAN Chao1,LI Yong-Peng1,LI Ji-Lin1,*   

  1. 1 Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province / College of Life Science and Technology, Harbin Normal University, Harbin 150025, China; 2 Institute of Crop Breeding, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China?
  • Received:2011-09-02 Revised:2012-04-16 Published:2012-08-12 Published online:2012-06-04
  • Contact: 李集临, E-mail: jilinlee2004@yahoo.com.cn, Tel: 0451-88060576

摘要: 通过杂交方法获得八倍体小偃麦与中间偃麦草杂种后代,对该杂交后代进行了形态学观察和细胞遗传学分析。杂交当代结实率为10%~39%;F1表现为两亲中间型,多年生,抗小麦多种病害,生长的第2和第3年结少量种子,结实率为2%~3%;F2分离复杂,出现八倍体小偃麦类型和中间偃麦草类型的多年生材料;F3和F4代出现一些普通小麦类型的多年生小麦,表现多分蘖、多小穗、抗病、抗寒。F1根尖减数分裂中发现49条染色体,在减数分裂中期I形成14~17个二价体和4~21个单价体;而F2和F3代减数分裂时形成14~21个二价体和9~17个单价体。杂种后代结实率逐代恢复。F1植株已在田间自然条件下生长5年。从F4代中获得了4个植株高大(140 cm)、分蘖丰富(60个以上)、小穗多(25~30个)的饲草型多年生小麦株系,它们不仅具有良好的刈割再生能力,而且兼抗多种病害,抗寒性好,草质与中间偃麦草相似。还获得了一些普通小麦类型的多年生株系,有待进一步改良。这些结果为多年生小麦的遗传研究和利用提供了信息和材料基础。

关键词: 中间偃麦草, 多年生小麦, 形态特征, 细胞遗传学

Abstract: The morphology of the progeniesfrom octoploid Trititrigia ´ Thinopyrum intermedim and their chromosomal behaviours during meiosis were observed to provide therotical and material bases for developing perennial wheat. The seed-setting rate of contemporary hybrid was 10–39%, and the F1 plants showed an intermediate type of parents with perennial characteristic and resistance to multiple diseases. During the second and third growing year, the F1 plants produced a small amount of seeds with setting rate of 2–3%. The F2 plants separated complexly, which involved the types of Tritielytrigia and Thinopyrum intermedium. The F3 and F4 generations tended to produce some types of common wheat but with perennial characteristics, such as rich tillers, prolific spikelets, and resistances to diseases and coldness. In F1 generation, 49 chromosomes were observed in root tip cells, which formed 14–17 bivalents and 4–21 univalents at metaphase of meiosis I. In F2 and F3 generations, the numbers of bivalent and univalent at meiosis were 14–21 and 9–17, respectively. Seed-setting rate of the perennial hybrids was recovered with the increase of generation, and the F1 plants could survive in natural environment for five years. We have obtained four perennial wheat lines in forage type from the F4 generation. These lines showed tall plant height (140 cm), abundant tillers (more than 60), rich spikelets (25–30), resistance to multiple diseases, tolerance to coldness, and high regenerative capability after harvest. Besides, some common wheat-type perennial lines were also attractive, which requires further improvement.

Key words: Thinopyrum intermedium, Perennial wheat, Morphological characteristics, Cytogenetics

[1]Glover J D, Reganold J P, Bell L W, Borevitz J, Brummer E C, Buckler E S, Cox C M, Cox T S, Crews T E , Culman S W, DeHaan L R, Eriksson D, Gill B S, Holland J, Hu F, Hulke B S, Ibrahim A M H, Jackson W, Jones S S, Murray S C, Paterson A H, Ploschuk E, Sacks E J, Snapp S, Tao D, Van Tassel D L. Increased food and ecosystem security via perennial grains. Science, 2010, 328: 1638–1639

[2]Cassman K G, Dobermann A, Walters D. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio, 2002, 31: 132–140

[3]Randall G W, Mulla D. Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. J Environ Quality, 2001, 30: 337–344

[4]Jordan N, Boody G, Broussard W, Glover J D , Keeney D, McCown B H, McIsaac G, Muller M , Murray H, Neal J, Pansing C, Turner R E, Warner K, Wyse D. Sustainable development of the agricultural bio-economy. Science, 2007, 316: 1570–1571

[5]Glover J D, Cox C M, Reganold J P. Future of farming: a return to roots? Sci Am, 2007, 297: 82–89

[6]Peto F H. Hybridization of Triticum and Agropyron: II. Cytology of the male parents and F1 generation. Can J Res C Bot Sci, 1936, 14: 203–214

[7]Armstrong J M, Stevenson T M. The effects of continuous line selection in Triticum-Agropyron hybrids. Empire J Exp Agric, 1947, 15: 51–64

[8]Perennial wheat in the U.S.S.R. J Am Soc Agron, 1936, 28: 1061-1062

[9]Suneson C A, El Sharkaway A, Hall W E. Progress in 25 years of perennial wheat development. Crop Sci, 1963, 3: 437–438

[10]Qi J H B. Li T-T(李特特), Liu Y-X(刘毓湘), Huang M-Y(黄慕玉). Perennial Wheat (多年生小麦). Beijing: Agriculture Press, 1982. pp 189–196 (in Chinese)

[11]Lammer D, Cai X W, Arterburn M, Chatelain J, Murray T, Jones S. A single chromosome addition from perennial Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J Exp Bot, 2004, 55: 1715–1720

[12]Cox T S, Glover J D, David L, Cox C M, Dehaan L R. Prospects for developing perennial grain crops. Bioscience, 2006, 56: 649–658

[13]Cox C M, Murray T D, Jones S S, Perennial wheat germplasm lines resistant to eyespot, Cephalosporium stripe, and wheat streak mosaic. Plant Dis, 2002, 86: 1043–1048

[14]Murphy K M, Carter A, Zemetra R S, Jones S S. Karyotype and ideogram analyses of four wheatgrass cultivars for use in perennial wheat breeding. J Sustainable Agric, 2007, 31: 137 - 149

[15]Bell L W, Wade L J, Ewing M. Perennial wheat: a review of environmental and agronomic prospects for development in Australia. Crop Pasture Sci, 2010, 61: 679–690

[16]Bell L W, Byrne F, Ewing M, Ewing M A, Wade L J. A preliminary whole-farm economic analysis of perennial wheat in an Australian dryland farming system. Agric Syst, 2008, 96: 166–174

[17]Sun Y(孙玉), Sun S-C(孙善澄), Liu S-X(刘少翔), Yan G-Y(闫贵云), Guo Q(郭庆). Study on varieties breeding and selection of perennial wheat. Seed (种子), 2011, 30(4): 21–26 (in Chinese with English abstract)

[18]Yan X-D(闫小丹), Zhang Y-M(张延明), Li J-L(李集临). Octoploid Trititrigia with Agropyron glaucum F1 hybrid Elytrigia genome structure. Bull Bot Res(植物学报), 2010, 30(2): 197-201 (in Chinese with English abstract)

[19]Li L-H(李立会), Li X-Q(李秀全). Descriptors and Date Standard for Wheat (小麦种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2006 (in Chinese)

[20]Sambrook J. Molecular Cloning. LongIsland, USA: Cold Spring Harbor Laboratory Press, 1989. pp 463–469

[21]Fukui K, Ohmido N, Khush G S. Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor Appl Genet, 1994, 87: 893–899

[22]Zhong G-C(钟冠昌), Mu S-M(穆素梅), Zhang Z-B(张正斌). Distant Hybridization in Triticeae Crops (麦类远缘杂交). Beijing: Science Press, 2002. pp 70–92 (in Chinese)

[23]Chen Q. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe: a landmark approach for Thinopyrum genome research. Cytogenet Genome Res, 2005, 109: 350–359

[24]Cox T S, DeHaan L R, Tassel D L V, Cox C M. Progress in breeding perennial grains. Crop Pasture Sci, 2010, 61: 513–521

[25]Sun S-C(孙善澄). The approach and methods of breeding new varieties and species from Agrotriticum. Acta Agron Sin (作物学报), 1981, 7(1): 51–58 (in Chinese with English abstract)

[26]Lü W-D(吕伟东), Xu P-B(徐鹏彬), Pu X(蒲训). Summary of the situation for applying genetic resources from Elytrigia in Triticum aestivum breeding. Acta Pratacult (草业学报), 2007, 16(6): 136–140 (in Chinese with English abstract)

[27]Wang L-M(王黎明), Lin X-H(林小虎), Zhao F-T(赵逢涛), Wang H-G(王洪刚). Configuration of Elytrigia intermedium and its valuable genes transferred into wheat. Grassland China (中国草地), 2005, 27(1): 57–63 (in Chinese with English abstract)

[28]Dvork J. Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromosomes. Can J Genet Cytol, 1980, 22:237–259

[29]Zhang X Y, Dong Y S, Wang R R C. Characterization of genomes and chromosomes in partial amphiploid of the hybrid Triticum aestivum × Thinpyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome, 1996, 39: 1062–1071
[1] 陶军, 兰秀锦. 小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定[J]. 作物学报, 2022, 48(2): 511-517.
[2] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[3] 亓晓蕾,鲍印广,李兴锋,钱兆国,王瑞霞,吴科,王洪刚. 十个八倍体小偃麦的细胞学鉴定和染色体构成分析[J]. 作物学报, 2017, 43(07): 967-973.
[4] 李建波,乔麟轶,李欣,张晓军,詹海仙,郭慧娟,任永康,畅志坚. 小麦–中间偃麦草渗入系抗白粉病基因PmCH7124的分子定位[J]. 作物学报, 2015, 41(01): 49-56.
[5] 龚金龙,邢志鹏,胡雅杰,张洪程*,戴其根,霍中洋,许轲,魏海燕,高辉,郭保卫. 籼、粳超级稻品种根系形态及若干生理特征的差异[J]. 作物学报, 2014, 40(06): 1066-1080.
[6] 李洪杰,王晓鸣,陈怀谷,李伟,刘东涛,张会云. 小麦-偃麦草杂种后代及小麦种质资源对纹枯病的抗性[J]. 作物学报, 2013, 39(06): 999-1012.
[7] 崔承齐,王林生,陈佩度. 普通小麦–大赖草易位系T7BS•7Lr#1S和T2AS•2AL-7Lr#1S的分子细胞遗传学鉴定[J]. 作物学报, 2013, 39(02): 191-197.
[8] 向安强,张文绪,曹毅,刘桂富. 湖南澧县大坪双堰东周水井出土古稻研究[J]. 作物学报, 2012, 38(10): 1943-1947.
[9] 赵丹, 赵继荣, 黄茜, 李宁, 黄占景, 张增艳. 利用BSMV-VIGS技术快速分析小麦TNBL1基因的抗黄矮病功能[J]. 作物学报, 2011, 37(11): 2106-2110.
[10] 李钊, 庄洪涛, 杜丽璞, 周淼平, 蔡士宾, 徐惠君, 李斯深, 张增艳. 组织特异表达启动子RSS1P在转TiERF1基因小麦中的应用[J]. 作物学报, 2011, 37(10): 1897-1903.
[11] 李宁, 黄茜, 刘燕, 赵丹, 刘艳, 黄占景, 张增艳. 小麦抗病基因类似序列BRG1的分离与功能分析[J]. 作物学报, 2011, 37(06): 998-1004.
[12] 詹秋文;朱立猛;吴娟娟;张伟;张天真. 苏丹草高粱及其杂种的细胞遗传学研究[J]. 作物学报, 2008, 34(07): 1206-1212.
[13] 马殿荣;李茂柏;王楠;徐正进;陈温福. 中国辽宁省杂草稻遗传多样性及群体分化研究[J]. 作物学报, 2008, 34(03): 403-411.
[14] 王凯;杜丽璞;张增艳;廖勇;徐惠君;姚乌兰;黄璜;杨昆;辛志勇. 中间偃麦草SGT1基因的克隆及其抗病功能的分析[J]. 作物学报, 2008, 34(03): 520-525.
[15] 姚乌兰;张增艳;陈亮. 病原诱导的中间偃麦草ERF转录因子基因的克隆及其表达特性[J]. 作物学报, 2007, 33(09): 1405-1410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!