作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1378-1386.doi: 10.3724/SP.J.1006.2012.01378
赵海滨1,2,张延明1,2,史春龙1,闫小丹1,田超1,厉永鹏1,李集临1,*
ZHAO Hai-Bin1,2,ZHANG Yan-Ming1,2,SHI Chun-Long1,YAN Xiao-Dan1,TIAN Chao1,LI Yong-Peng1,LI Ji-Lin1,*
摘要: 通过杂交方法获得八倍体小偃麦与中间偃麦草杂种后代,对该杂交后代进行了形态学观察和细胞遗传学分析。杂交当代结实率为10%~39%;F1表现为两亲中间型,多年生,抗小麦多种病害,生长的第2和第3年结少量种子,结实率为2%~3%;F2分离复杂,出现八倍体小偃麦类型和中间偃麦草类型的多年生材料;F3和F4代出现一些普通小麦类型的多年生小麦,表现多分蘖、多小穗、抗病、抗寒。F1根尖减数分裂中发现49条染色体,在减数分裂中期I形成14~17个二价体和4~21个单价体;而F2和F3代减数分裂时形成14~21个二价体和9~17个单价体。杂种后代结实率逐代恢复。F1植株已在田间自然条件下生长5年。从F4代中获得了4个植株高大(140 cm)、分蘖丰富(60个以上)、小穗多(25~30个)的饲草型多年生小麦株系,它们不仅具有良好的刈割再生能力,而且兼抗多种病害,抗寒性好,草质与中间偃麦草相似。还获得了一些普通小麦类型的多年生株系,有待进一步改良。这些结果为多年生小麦的遗传研究和利用提供了信息和材料基础。
[1]Glover J D, Reganold J P, Bell L W, Borevitz J, Brummer E C, Buckler E S, Cox C M, Cox T S, Crews T E , Culman S W, DeHaan L R, Eriksson D, Gill B S, Holland J, Hu F, Hulke B S, Ibrahim A M H, Jackson W, Jones S S, Murray S C, Paterson A H, Ploschuk E, Sacks E J, Snapp S, Tao D, Van Tassel D L. Increased food and ecosystem security via perennial grains. Science, 2010, 328: 1638–1639[2]Cassman K G, Dobermann A, Walters D. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio, 2002, 31: 132–140[3]Randall G W, Mulla D. Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices. J Environ Quality, 2001, 30: 337–344[4]Jordan N, Boody G, Broussard W, Glover J D , Keeney D, McCown B H, McIsaac G, Muller M , Murray H, Neal J, Pansing C, Turner R E, Warner K, Wyse D. Sustainable development of the agricultural bio-economy. Science, 2007, 316: 1570–1571[5]Glover J D, Cox C M, Reganold J P. Future of farming: a return to roots? Sci Am, 2007, 297: 82–89[6]Peto F H. Hybridization of Triticum and Agropyron: II. Cytology of the male parents and F1 generation. Can J Res C Bot Sci, 1936, 14: 203–214[7]Armstrong J M, Stevenson T M. The effects of continuous line selection in Triticum-Agropyron hybrids. Empire J Exp Agric, 1947, 15: 51–64[8]Perennial wheat in the U.S.S.R. J Am Soc Agron, 1936, 28: 1061-1062[9]Suneson C A, El Sharkaway A, Hall W E. Progress in 25 years of perennial wheat development. Crop Sci, 1963, 3: 437–438[10]Qi J H B. Li T-T(李特特), Liu Y-X(刘毓湘), Huang M-Y(黄慕玉). Perennial Wheat (多年生小麦). Beijing: Agriculture Press, 1982. pp 189–196 (in Chinese)[11]Lammer D, Cai X W, Arterburn M, Chatelain J, Murray T, Jones S. A single chromosome addition from perennial Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J Exp Bot, 2004, 55: 1715–1720[12]Cox T S, Glover J D, David L, Cox C M, Dehaan L R. Prospects for developing perennial grain crops. Bioscience, 2006, 56: 649–658[13]Cox C M, Murray T D, Jones S S, Perennial wheat germplasm lines resistant to eyespot, Cephalosporium stripe, and wheat streak mosaic. Plant Dis, 2002, 86: 1043–1048[14]Murphy K M, Carter A, Zemetra R S, Jones S S. Karyotype and ideogram analyses of four wheatgrass cultivars for use in perennial wheat breeding. J Sustainable Agric, 2007, 31: 137 - 149[15]Bell L W, Wade L J, Ewing M. Perennial wheat: a review of environmental and agronomic prospects for development in Australia. Crop Pasture Sci, 2010, 61: 679–690[16]Bell L W, Byrne F, Ewing M, Ewing M A, Wade L J. A preliminary whole-farm economic analysis of perennial wheat in an Australian dryland farming system. Agric Syst, 2008, 96: 166–174[17]Sun Y(孙玉), Sun S-C(孙善澄), Liu S-X(刘少翔), Yan G-Y(闫贵云), Guo Q(郭庆). Study on varieties breeding and selection of perennial wheat. Seed (种子), 2011, 30(4): 21–26 (in Chinese with English abstract) [18]Yan X-D(闫小丹), Zhang Y-M(张延明), Li J-L(李集临). Octoploid Trititrigia with Agropyron glaucum F1 hybrid Elytrigia genome structure. Bull Bot Res(植物学报), 2010, 30(2): 197-201 (in Chinese with English abstract)[19]Li L-H(李立会), Li X-Q(李秀全). Descriptors and Date Standard for Wheat (小麦种质资源描述规范和数据标准). Beijing: China Agriculture Press, 2006 (in Chinese)[20]Sambrook J. Molecular Cloning. LongIsland, USA: Cold Spring Harbor Laboratory Press, 1989. pp 463–469[21]Fukui K, Ohmido N, Khush G S. Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor Appl Genet, 1994, 87: 893–899[22]Zhong G-C(钟冠昌), Mu S-M(穆素梅), Zhang Z-B(张正斌). Distant Hybridization in Triticeae Crops (麦类远缘杂交). Beijing: Science Press, 2002. pp 70–92 (in Chinese)[23]Chen Q. Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe: a landmark approach for Thinopyrum genome research. Cytogenet Genome Res, 2005, 109: 350–359[24]Cox T S, DeHaan L R, Tassel D L V, Cox C M. Progress in breeding perennial grains. Crop Pasture Sci, 2010, 61: 513–521[25]Sun S-C(孙善澄). The approach and methods of breeding new varieties and species from Agrotriticum. Acta Agron Sin (作物学报), 1981, 7(1): 51–58 (in Chinese with English abstract)[26]Lü W-D(吕伟东), Xu P-B(徐鹏彬), Pu X(蒲训). Summary of the situation for applying genetic resources from Elytrigia in Triticum aestivum breeding. Acta Pratacult (草业学报), 2007, 16(6): 136–140 (in Chinese with English abstract)[27]Wang L-M(王黎明), Lin X-H(林小虎), Zhao F-T(赵逢涛), Wang H-G(王洪刚). Configuration of Elytrigia intermedium and its valuable genes transferred into wheat. Grassland China (中国草地), 2005, 27(1): 57–63 (in Chinese with English abstract)[28]Dvork J. Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromosomes. Can J Genet Cytol, 1980, 22:237–259[29]Zhang X Y, Dong Y S, Wang R R C. Characterization of genomes and chromosomes in partial amphiploid of the hybrid Triticum aestivum × Thinpyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome, 1996, 39: 1062–1071 |
[1] | 陶军, 兰秀锦. 小麦-中间偃麦草2A/6St代换系014-459的分子细胞遗传学鉴定[J]. 作物学报, 2022, 48(2): 511-517. |
[2] | 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447. |
[3] | 亓晓蕾,鲍印广,李兴锋,钱兆国,王瑞霞,吴科,王洪刚. 十个八倍体小偃麦的细胞学鉴定和染色体构成分析[J]. 作物学报, 2017, 43(07): 967-973. |
[4] | 李建波,乔麟轶,李欣,张晓军,詹海仙,郭慧娟,任永康,畅志坚. 小麦–中间偃麦草渗入系抗白粉病基因PmCH7124的分子定位[J]. 作物学报, 2015, 41(01): 49-56. |
[5] | 龚金龙,邢志鹏,胡雅杰,张洪程*,戴其根,霍中洋,许轲,魏海燕,高辉,郭保卫. 籼、粳超级稻品种根系形态及若干生理特征的差异[J]. 作物学报, 2014, 40(06): 1066-1080. |
[6] | 李洪杰,王晓鸣,陈怀谷,李伟,刘东涛,张会云. 小麦-偃麦草杂种后代及小麦种质资源对纹枯病的抗性[J]. 作物学报, 2013, 39(06): 999-1012. |
[7] | 崔承齐,王林生,陈佩度. 普通小麦–大赖草易位系T7BS•7Lr#1S和T2AS•2AL-7Lr#1S的分子细胞遗传学鉴定[J]. 作物学报, 2013, 39(02): 191-197. |
[8] | 向安强,张文绪,曹毅,刘桂富. 湖南澧县大坪双堰东周水井出土古稻研究[J]. 作物学报, 2012, 38(10): 1943-1947. |
[9] | 赵丹, 赵继荣, 黄茜, 李宁, 黄占景, 张增艳. 利用BSMV-VIGS技术快速分析小麦TNBL1基因的抗黄矮病功能[J]. 作物学报, 2011, 37(11): 2106-2110. |
[10] | 李钊, 庄洪涛, 杜丽璞, 周淼平, 蔡士宾, 徐惠君, 李斯深, 张增艳. 组织特异表达启动子RSS1P在转TiERF1基因小麦中的应用[J]. 作物学报, 2011, 37(10): 1897-1903. |
[11] | 李宁, 黄茜, 刘燕, 赵丹, 刘艳, 黄占景, 张增艳. 小麦抗病基因类似序列BRG1的分离与功能分析[J]. 作物学报, 2011, 37(06): 998-1004. |
[12] | 詹秋文;朱立猛;吴娟娟;张伟;张天真. 苏丹草高粱及其杂种的细胞遗传学研究[J]. 作物学报, 2008, 34(07): 1206-1212. |
[13] | 马殿荣;李茂柏;王楠;徐正进;陈温福. 中国辽宁省杂草稻遗传多样性及群体分化研究[J]. 作物学报, 2008, 34(03): 403-411. |
[14] | 王凯;杜丽璞;张增艳;廖勇;徐惠君;姚乌兰;黄璜;杨昆;辛志勇. 中间偃麦草SGT1基因的克隆及其抗病功能的分析[J]. 作物学报, 2008, 34(03): 520-525. |
[15] | 姚乌兰;张增艳;陈亮. 病原诱导的中间偃麦草ERF转录因子基因的克隆及其表达特性[J]. 作物学报, 2007, 33(09): 1405-1410. |
|