欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1369-1377.doi: 10.3724/SP.J.1006.2012.01369

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

山农01-35×藁城9411重组自交系遗传图谱构建及粒重QTL分析

师翠兰,郑菲菲,陈建省,韩淑晓,王永瑞,田纪春*   

  1. 山东农业大学作物生物学国家重点实验室 / 山东省作物生物学实验室,山东泰安 271018
  • 收稿日期:2012-01-09 修回日期:2012-04-20 出版日期:2012-08-12 网络出版日期:2012-06-04
  • 通讯作者: 田纪春, E-mail: jctian@sdau.edu.cn; Tel: 0538-8242040
  • 基金资助:

    本研究由国家重点基础研究计划(973计划)项目(2009BC118301)和国家自然科学基金项目(31171554)资助。

Construction of Genetic Map and Analysis of QTLs for Grain Weight Using a RIL Population Derived from Shannong 01-35 × Gaocheng 9411

SHI Cui-Lan,ZHENG Fei-Fei,CHEN Jian-Sheng,HAN Shu-Xiao,WANG Yong-Rui,TIAN Ji-Chun*   

  1. State Key Laboratory of Crop Biology / Shandong Provincial Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
  • Received:2012-01-09 Revised:2012-04-20 Published:2012-08-12 Published online:2012-06-04
  • Contact: 田纪春, E-mail: jctian@sdau.edu.cn; Tel: 0538-8242040

摘要: 为利用分子遗传图谱进行小麦产量数量性状位点定位分析,以大粒高产小麦品系山农01-35和强筋小麦藁城9411为亲本,衍生了含182个家系的重组自交系(RIL)F8群体,用442个DArT标记、59个SSR标记和1个TaGW2-CAPS标记,构建了包括29个连锁群的分子遗传图谱,总遗传长度为4 084.5 cM,标记间平均距离为8.13 cM。定位了54个新标记位点,包括44个DArT和10个SSR标记,分布于除4D、6B、7B外的其他18条染色体上。用该分子遗传图谱和4个环境粒重表型值,共检测到7个影响粒重的加性QTL,分别位于1B、4B、5B、6A染色体,其中QGW4B-7QGW5B-20QGW6A-29在单环境分别定位和4个环境共同定位两种方法中均能检测到。QGW4B-7QGW5B-12QGW6A-29对粒重的贡献率均超过10%,为主效QTL。本研究结果可为小麦高产优质性状的QTL分析及分子标记辅助选择提供参考。

关键词: 小麦, 遗传图谱, 粒重, QTL

Abstract: The objectives of this study were to construct a new linkage map of wheat using a recombinant inbred line (RIL) population derived from the cross between Shannong 01-35 and Gaocheng 9411 and locate quantitative trait loci for thousand-grain weight (TGW) using this map. The RIL population, consisting of 182 lines, was obtained via single-seed descendent method until the F8 generation. The genetic map consisted of one TaGW2-CAPS,59 SSR, and442 DArT markers in 29 linkage groups, including 54 novel markers (44 DArT markers and 10 SSRs) assigned into 18 linkage groups. The total genetic length of the map was 4084.5 cM with an average interval distance of 8.13 cM. The 182 RILs and their parents were grown in four environments from 2008 to 2010, and QTLs associated with TGW were identified using mixed linear model based on both separated and joint environments. A total of seven QTLs were detected including three QTLs (QGW4B-7, QGW5B-20, and QGW6A-29) commonly found using both methods. Three major QTLs, i.e., QGW4B-7, QGW5B-12, and QGW6A-29, exhibited phenotypic contributions higher than 10%. These results suggest that the QTLs detected by using the successfully constructed genetic map are valuable in molecular marker-assisted selection in wheat.

Key words: Wheat, Genetic map, Grain weight, QTL

[1]Röder M S, Korzun V, Wendehake K, Plaschke J, Tixier M H, Leroy P, Ganal M W. A microsatellite map of wheat. Genetics, 1998, 149: 2007-2023

[2]Somers D J, Isaac P, Edwards K. A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet, 2004, 109: 1105-1114

[3]Torada A, Koike M, Mochida K, Ogihara Y. SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet, 2006, 112: 1042-1051

[4]Liu G(刘刚), Xu S-B(许盛宝), Ni Z-F(倪中福), Li J(李晶), Qin D-D(秦丹丹), Dou B-D(窦秉德), Peng H-R(彭慧茹), Sun Q-X(孙其信). Genetic analysis of segregation distortion of molecular markers in wheat RIL population. J Agric Biotechnol (农业生物技术学报), 2007, 15(5): 828-833 (in Chinese with English abstract)

[5]Shi P-C(石培春), Wang G-L(王光利), Zhang W(张薇), Cao L-P(曹连莆). Construction of wheat SSR molecular linkage map and its polymorphism. Xinjiang Agric Sci (新疆农业科学), 2007, 44(suppl-3): 71-76 (in Chinese with English abstract)

[6]Zhang K P, Zhao L, Tian J C, Chen G F, Jiang X L, Liu B. A genetic map conducted using a doubled haploid population derived from two elite Chinese common wheat (Triticum aestivum L.) varieties. J Integr Plant Biol, 2008, 50: 941-950

[7]Jaccoud D, Peng K, Feinstein D, Kilian A. Diversity arrays: a solid state technology for sequence information independent genotyping . Nucl Acids Res, 2001, 29(4): e25

[8]Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A. Diversity arrays technology (DArT) for whole genome profiling of barley. Proc Natl Acad Sci USA, 2004, 101: 9915-9920

[9]Hong Y-H(洪义欢), Xiao-Y(肖宁), Zhang C(张超), Su Y(苏琰), Chen J-M(陈建民). Principle of diversity arrays technology (DArT) and its applications in genetic research of plants. Hereditas (遗传), 2009, 31(4): 359-364 (in Chinese with English abstract)

[10]Hearnden P R, Eckermann P J, McMichael G L, Hayden M J, Eglinton J K, Chalmers K J. A genetic map of 1000 SSR and DArT markers in a wide barley cross. Theor Appl Genet, 2007, 115: 383-391

[11]Mantovani P, Wenzl P, Catizone I, Huttner E, Maccaferri M, Corneti S, Sanguineti M C, Tuberosa R, Deambrogio E, Kilian A. A durum wheat linkage map: integration of SSR and DArT markers. In: Proceedings of the 51st Italian Society of Agricultural Genetics Annual Congress, Riva del. Garda, Italy, 2007

[12]Wenzl P, Li H B, Carling J, Zhou M X, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesná J, Cakir M, Poulsen D, Wang J P, Raman R, Smith K P, Muehlbauer G J, Chalmers K J, Kleinhofs A, Huttner E, Kilian A. A high density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics, 2006, 7: 206-227

[13]Huynh B L , Wallwork H, Stangoulis J C R, Graham R D, Willsmore K L, Olson S, Mather D E. Quantitative trait loci for grain fructan concentration in wheat (Triticum aestivum L.). Theor Appl Genet, 2008, 117: 701-709

[14]Semagn K, Bjornstad A, Skimes H, Maroy A G, Tarkegne Y, William M. Distribution of DArT, AFLP and SSR markers in a genetic linkage map of a doubled haploid hexaploid wheat population. Genome, 2006, 49: 545-555

[15]Griffiths S, Simmonds J, Leverington M, Wang Y K, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J. Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet, 2009, 119: 383-395

[16]Yao Q(姚琴), Zhou R-H(周荣华), Pan Y-M(潘昱名), Fu T-H(傅体华), Jia J-Z(贾继增). Construction of genetic linkage map and QTL analysis of agronomic important traits based on a RIL population derived from common wheat variety Yanzhan 1 and Zaosui 30. Sci Agric Sin (中国农业科学), 2010, 43(20): 4130-4139 (in Chinese with English abstract)

[17]Su Z-G(苏振刚), Yang W-B(杨卫兵), Tian J-C(田纪春), Song G-Z(宋广芝). The relationships between soluble sugar contents of plant and kernel and dry matter accumulation in different high yielding wheat genotypes. Chin Agric Sci Bull (中国农学通报), 2007, 23(9): 307-311 (in Chinese with English abstract)

[18]Shi Y(石玉), Gu S-B(谷淑波), Xu Z-W(于振文), Xu Z-Z(许振柱). Contents of protein components stored in grains and activities of related enzymes in wheat cultivars in different quality types. Acta Agron Sin (作物学报), 2011, 37(11): 2030-2038 (in Chinese with English abstract)

[19]Akbari M, Wenzl P, Caig V, Carlig J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden M J, Howes N, Sharp P, Vaughan P, Rathmell B, Huttner E, Kilian A. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet, 2006, 113: 1409-1420

[20]Pestsova E, Ganal M W, Röder M S. Isolation and mapping of microsatellite markers speci?c for the D genome of bread wheat. Genome, 2000, 43: 689-697

[21]Lincoln S E, Daly M J, Lander E S. Constructing genetic maps with MAPMAKER/EXP version 3.0, a tutorial and reference manual. In: Whitehead Inst Biomed Res Tech Rep, 3rd Edn. Whitehead Institute for Biomedical Research, Cambridge, 1993. p 97

[22]Voorrips R E. Map Chart: software for the graphical presentation of linkage maps and QTLs. Heredity, 2002, 93: 77-78

[23]Wang D L, Zhu J, Li Z K, Paterson A H. Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor Appl Genet, 1999, 99: 1255-1264

[24]Yang J, Zhu J. Methods for predicting superior genotypes under multiple environments based on QTL effects. Theor Appl Genet, 2005, 110: 1268-1274

[25]McIntosh R A, Devos K M, Dubcovsky J, Rogers W J, Morris C F, Appels R, Anderson O D. Catalogue of gene symbols for wheat: 2005 supplement. [2010-05-15]. http://wheat.pw.usda.gov/ggpages/wgc/2005upd.html

[26]Sourdille P, Singh S, Cadalen T, Brown-Guedira G L, Gay G, Qi L. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics, 2004, 4: 12-25

[27]Su Z Q, Hao C Y, Wang L F, Dong Y C, Zhang X Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet, 2011, 122: 211-223

[28]Boyko E V, Gill K S, Mickelson-Young L, Nasuda S, Raupp W J, Ziegle J N. A high density genetic map of Aegilops tauschii, the D genome progenitor of bread wheat. Theor Appl Genet, 1999, 99: 16-26

[29]Zhang D Q, Zhang Z Y, Yang K. Genome-wide search for segregation distortion loci associated with the expression of complex traits in Populus tomentosa. For Stud China, 2007, 9: 1-6

[30]Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder M S, Weber W E. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet, 2002, 105: 921-936

[31]McCartney C A, Somers D J, Humphreys D G, Lukow O, Ames N, Noll J, Cloutier S, McCallum B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross genome RL4452 × ‘AC Domain’. Genome, 2005, 48: 870-883

[32]Huang X Q, Cloutier S, Lycar L, Radovanovic N, Humphreys D G, Noll J S, Somers D J, Brown P D. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theor Appl Genet, 2006, 113: 753-766

[33]Wang R X, Hai L, Zhang X Y, You G X, Yan C S, Xiao S H. QTL mapping for grain ?lling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu 8679. Theor Appl Genet, 2009, 118: 313-325

[34]Ding A-M(丁安明), Li J(李君), Cui F(崔法), Zhao C-H(赵春华), Ma H-Y(马航运), Wang H-G(王洪刚). QTL mapping for yield related traits using two associated RIL populations of wheat. Acta Agron Sin (作物学报), 2011, 37(9): 1511-1524 (in Chinese with English abstract)

[35]Wang R-X(王瑞霞), Zhang X-Y(张秀英), Wu L(伍玲), Wang R(王瑞), Hai L(海林), You G-X(游光霞), Yan C-S(闫长生), Xiao S-H(肖世和). QTL analysis of grain size and related traits in winter wheat under different ecological environments. Sci Agric Sin (中国农业科学), 2009, 42(2): 398-407 (in Chinese with English abstract)
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 于春淼, 张勇, 王好让, 杨兴勇, 董全中, 薛红, 张明明, 李微微, 王磊, 胡凯凤, 谷勇哲, 邱丽娟. 栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位[J]. 作物学报, 2022, 48(5): 1091-1102.
[4] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[5] 王娟, 张彦威, 焦铸锦, 刘盼盼, 常玮. 利用PyBSASeq算法挖掘大豆百粒重相关位点与候选基因[J]. 作物学报, 2022, 48(3): 635-643.
[6] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[7] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[8] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 张艳波, 王袁, 冯甘雨, 段慧蓉, 刘海英. 棉籽油分和3种主要脂肪酸含量QTL分析[J]. 作物学报, 2022, 48(2): 380-395.
[11] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[12] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[13] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[14] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[15] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!