欢迎访问作物学报,今天是

作物学报 ›› 2012, Vol. 38 ›› Issue (08): 1361-1368.doi: 10.3724/SP.J.1006.2012.01361

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

陆地棉转录因子的染色体定位

李丽**,汪顺峰**,刘芳,唐世义,谭兆云,张建,滕中华,刘大军,张正圣*   

  1. 西南大学农学与生物科技学院 / 南方山地农业教育部工程研究中心,重庆400716
  • 收稿日期:2011-12-31 修回日期:2012-04-16 出版日期:2012-08-12 网络出版日期:2012-06-04
  • 通讯作者: 张正圣, E-mail: zhangzs@swu.edu.cn, Tel: 13883608797
  • 基金资助:

    本研究由国家自然科学基金项目(31071464, 30900910)和重庆市自然科学项目(CSTC, 2010BB1013)资助。

Chromosomal Localization of Transcription Factors in Gossypium hirsutum

LI Li**,WANG Shun-Feng**,LIU Fang,TANG Shi-Yi,TAN Zhao-Yun,ZHANG Jian,TENG Zhong-Hua,LIU Da-Jun,ZHANG Zheng-Sheng*   

  1. College of Agronomy and Biotechnology, Southwest University / Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing 400716, China
  • Received:2011-12-31 Revised:2012-04-16 Published:2012-08-12 Published online:2012-06-04
  • Contact: 张正圣, E-mail: zhangzs@swu.edu.cn, Tel: 13883608797

摘要: 利用植物转录因子PTFD数据库1 116条陆地棉转录因子DNA序列设计的1 455对SSR引物,筛选陆地棉品种/品系渝棉1号、中棉所35、7235和T586,获得66对多态性引物。它们涉及到27个转录因子家族的64个转录因子,其中渝棉1号与中棉所35间23对多态性引物,渝棉1号与T586间30对多态性引物,渝棉1号与7235间33对多态性引物。以多态性引物检测对应重组近交系群体,共获得93个位点。其中,(渝棉1号×中棉所35)群体23个位点,(渝棉1号×T586)群体32个位点,(渝棉1号×7235)群体38个位点。利用转录因子SSR位点与实验室已定位的SSR位点进行遗传连锁分析,将84个位点定位于23条染色体上,其中32个位点分布于A染色体组,52个位点分布于D染色体组。

关键词: 陆地棉, 转录因子, 染色体定位

Abstract: A total of 1 455 SSR primer pairs designed from 1 116 Gossypium hirsutum transcription factor DNA sequences in Plant Transcription Factor Databases (PTFD) were used to screen the polymorphic primers between upland cotton cultivars/lines Yumian 1, 7235, CCRI35, and T586. A total of 66 pairs of polymorphic primers were obtained, which are related to 64 transcription factors among 27 transcription factor families. The polymorphic primers included 23 pairs between yumian1 and CRI35, 30 pairs between Yumian 1 and T586, and 33 pairs between Yumian 1 and 7235. Sixty-six polymorphic primer pairs were used to genotype the corresponding recombinant inbred line populations, and 93 loci were obtained, including 23 loci in population (Yumian 1×CRI35) F2:6, 32 loci in population (Yumian 1×T586) F2:7, and 38 loci in population (Yumian 1×7235) F2:6. The transcription factor SSR loci, together with other SSR loci which have already been mapped on upland cotton linkage map in our laboratory, were used to conduct genetic linkage analysis, and 84 loci were mapped on 23 chromosomes, including 32 loci on A genome and 52 on D genome.

Key words: Gossypium hirsutum L., Transcription factor, Chromosomal localization

[1]Broun P, Liu Y, Queen E, Schwarz Y, Abenes M L, Leibman M. Importance of transcription factors in the regulation of plant secondary metabolism and their relevance to the control of terpenoid accumulation. Phytochem Rev, 2006, 5: 27–38

[2]Schwecheimer C, Zourelidou M C, Bevan M W. Plant transcription factors studies. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 127–150

[3]Oñate-Sánchez L, Anderson J P, Young J, Singh K B. AtERF14, a member of the ERF family of transcription factors, plays a nonredundant role in plant defense. Plant Physiol, 2007, 143: 400–409

[4]Park J M, Park C J, Lee S B, Ham B K, Shin R, Paek K H. Overexpression of the tobacco Tsi1 gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell, 2001, 13: 1035–1046

[5]Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of Ethylene-Response-Factor1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J, 2002, 29: 23–32

[6]Gu Y Q, Wildermuth M C, Chakravarthy S, Loh Y T, Yang C, He X, Han Yu, Martin G B. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell, 2002, 14: 817–831

[7]Zhang H, Zhang D, Chen J, Yang Y, Huang Z, Huang D, Wang X C, Huang R. Tomato stress-responsive factor TSRF1 interacts with ethylene responsive element GCC box and regulates pathogen resistance to Ralstonia solanacearum. Plant Mol Biol, 2004, 55: 825–834

[8]Cao Y, Wu Y, Zheng Z, Song F. Over-expression of the rice EREBP-like gene OsBIERF3 enhances disease resistance and salt tolerance in transgenic tobacco. Physiol Mol Plant Pathol, 2006, 67: 202–211

[9]Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet, 1997, 13: 67–73

[10]Qian S-Y(钱思颖), Huang J-Q(黄骏麒), Peng Y-J(彭跃进), Zhou B-L(周宝良), Ying M-C(应苗成), Shen D-Z(沈端庄), Liu G-L(刘桂玲), Hu T-X(胡廷馨), Xu Y-J(徐英俊), Gu L-M(顾立美), Ni W-C(倪万潮), Chen S(陈松). Studies on the hybrid of G. hirsutum L. and G. anomalum Wawr. & Peyr. and application in breeding. Sci Agric Sin (中国农业科学), 1992, 25(6): 44–51 (in Chinese with English abstract)

[11]Wan Q, Zhang Z, Hu M, Chen L, Liu D J, Chen X, Wang W, Zheng J. T1 locus in cotton is the candidate gene affecting lint percentage, fiber quality and spiny bollworm (Earias spp.) resistance. Euphytica, 2007, 158: 241–247

[12]Ni H-J(倪慧娟), Wang W(王威), Zhang J(张建), Liu D-J(刘大军), Teng Z-H(滕中华), Zhang Z-S(张正圣). QTL mapping of yield and fiber quality traits in upland cotton (Gossypium hirsutum L.) using F2 and its derived populations. J Southwest Univ (西南大学学报), 2011, 33(6): 7–14 (in Chinese with English abstract)

[13]Zhang Z, Xiao Y, Luo M, Li X, Luo X, Hou L, Li D, Pei Y. Construction of a genetic linkage map and QTL analysis of fiber-related traits in upland cotton (Gossypium hirsutum L.). Euphytica, 2005, 144: 91–99

[14]Van Ooijen J W, Voorrips R E. JoinMap 4.0, Software for the Calculation of Genetic Linkage Maps. Plant Research International, Wageningen, 2006

[15]Wang K, Song X, Han Z, Guo W, Yu J Z, Sun J, Pan J J, Kohel J, Zhang T. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet, 2006, 113: 73–80

[16]Zhang Z, Hu M, Zhang J, Liu D, Zheng J, Zhang K, Wang W, Wan Q. Construction of a comprehensive PCR-based marker linkage map and QTL mapping for fiber quality traits in (Gossypium hirsutum L.). Mol Breed, 2009, 24: 49–61

[17]An C, Saha S, Jenkins J N, Ma D P, ScheZer B E, Kohel R J, Yu J Z, Stelly D M, Cotton (Gossypium spp.) R2R3-MYB transcription factors SNP identification, phylogenomic characterization, chromosome localization, and linkage mapping. Theor Appl Genet, 2008, 116: 1015–1026

[18]Guo W, Cai C, Wang C, Han Z, Song X, Wang K, Niu X, Wang C, Lu K, Shi B, Zhang T. A microsatellite-based, gene-rich linkage map reveals genome structure, function and evolution in Gossypium. Genetics, 2007, 176: 527–541

[19]Yu Y, Yuan D, Liang S, Li X, Wang X, Lin Z, Zhang X. Genome structure of cotton revealed by a genome-wide SSR genetic map constructed from a BC1 population between G. hirsutum and G. barbadense. BMC Genom, 2011, 12: 15

[20]Riechmann J L. Transcription factors of Arabidopsis and rice: a genomic perspective. In: Grasser K D ed. Regulation of Transcription in Plants. Blackwell, Oxford. Annu Plant Rev, 2006, 29: pp28–53

[21]Shiu, S H, Shih M C, Li W H. Transcription factor families have much higher expansion rates in plants than in animals. Plant Physiol, 2005, 139: 18–26

[22]Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol, 2001, 4: 447–56

[23]Loguercio L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol Gen Genet, 1999, 261: 660–671

[24]Cedroni M L, Cronn R C, Adams K L, Wilkins T A, Wendel J F. Evolution and expression of MYB genes in diploid and polyploid cotton. Plant Mol Biol, 2003, 51: 313–325

[25]Hsu C Y, Jenkins J N, Saha S, Ma D P. Transcriptional regulation of the lipid transfer protein gene LTP3 cotton fiber by a novel MYB protein. Plant Sci, 2005, 168: 167–181

[26]Lee J J, Hassan O S S, Gao W, Wei N E, Kohel R J, Chen X Y, Payton P, Sze S H, Stelly D M, Chen Z J. Developmental and gene expression analysis of a cotton naked seed mutant. Planta, 2006, 223: 418–432

[27]Yang S S, Cheung F, Lee J J, Ha M, Wei N E, Sze S H, Stelly D M, Thaxton P, Triplett B, Town C D, Chen Z J. Accumulation of genome-specific transcripts, transcription factors and phytohormonal regulators during early stages of fiber cell development in allotetraploid cotton. Plant J, 2006, 47: 761–775

[28]Singh K, Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress response. Curr Opin Plant Biol, 2002, 5: 430–436

[29]Walford S A, Wu Y R, Llewellyn D J, Dennis E S. GhMYB25-like: a key factor in early cotton fibre development. Plant J, 2011, 65: 785–797

[30]Chrispeels H E, Oettinger H, Janvier N, Tague B W. AtZFP1, encoding Arabidopsis thaliana C2H2 zinc-finger protein 1, is expressed downstream of photomorphogenic activation. Plant Mol Biol, 2000, 42: 279–90

[31]Nakano T, Suzuki K, FujimuraT, Shinshi H. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol, 2006, 140: 411–432
[1] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[2] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[3] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[4] 马燕斌, 王霞, 李换丽, 王平, 张建诚, 文晋, 王新胜, 宋梅芳, 吴霞, 杨建平. 玉米光敏色素A1基因(ZmPHYA1)在棉花中的转化及分子鉴定[J]. 作物学报, 2021, 47(6): 1197-1202.
[5] 葛敏, 王元琮, 宁丽华, 胡梦梅, 石习, 赵涵. 氮响应转录因子ZmNLP5影响玉米根系生长的功能研究[J]. 作物学报, 2021, 47(5): 807-813.
[6] 韩贝, 王旭文, 李保奇, 余渝, 田琴, 杨细燕. 陆地棉种质资源抗旱性状的关联分析[J]. 作物学报, 2021, 47(3): 438-450.
[7] 杨梦婷, 张春, 王作平, 邹华文, 吴忠义. 玉米ZmbHLH161基因的克隆及功能研究[J]. 作物学报, 2020, 46(12): 2008-2016.
[8] 张欢, 杨乃科, 商丽丽, 高晓茹, 刘庆昌, 翟红, 高少培, 何绍贞. 甘薯抗旱相关基因IbNAC72的克隆与功能分析[J]. 作物学报, 2020, 46(11): 1649-1658.
[9] 晁毛妮,胡海燕,王润豪,陈煜,付丽娜,刘庆庆,王清连. 陆地棉钾转运体基因GhHAK5启动子的克隆与功能分析[J]. 作物学报, 2020, 46(01): 40-51.
[10] 周向阳,赵亮,狄佳春,陈旭升. 2个抗虫棉的外源Bt基因分子鉴定及其染色体定位[J]. 作物学报, 2019, 45(9): 1440-1445.
[11] 殷龙飞,王朝阳,吴忠义,张中保,于荣. 玉米ZmGRAS31基因的克隆及功能研究[J]. 作物学报, 2019, 45(7): 1029-1037.
[12] 张晓红,胡根海,王寒涛,王聪聪,魏恒玲,付远志,喻树迅. 棉花中GhTFL1aGhTFL1c基因的表达及启动子分析[J]. 作物学报, 2019, 45(3): 469-476.
[13] 吴迷,汪念,沈超,黄聪,温天旺,林忠旭. 基于重测序的陆地棉InDel标记开发与评价[J]. 作物学报, 2019, 45(2): 196-203.
[14] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
[15] 时丕彪,何冰,费月跃,王军,王伟义,魏福友,吕远大,顾闽峰. 藜麦GRF转录因子家族的鉴定及表达分析[J]. 作物学报, 2019, 45(12): 1841-1850.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!