欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (03): 563-569.doi: 10.3724/SP.J.1006.2013.00563

• 研究简报 • 上一篇    

异源表达棉花GhPRP5基因增强了拟南芥对盐和ABA的敏感性

张德静,秦丽霞,李龙,饶玥,李学宝,许文亮*   

  1. 华中师范大学生命科学学院 / 遗传调控与整合生物学湖北省重点实验室,湖北武汉 430079
  • 收稿日期:2012-07-10 修回日期:2012-10-09 出版日期:2013-03-12 网络出版日期:2012-12-11
  • 通讯作者: 许文亮, E-mail: wenliangxu@yahoo.com.cn, Tel: 027-67867814
  • 基金资助:

    本研究由国家自然科学基金项目(30870142和30400022)和华中师范大学中央高校基本科研业务费(120002040249)资助。

Expression of Cotton GhPRP5 Gene in Arabidopsis Enhances Susceptibility to ABA and Salt Stresses

ZHANG De-Jing,QIN Li-Xia,LI Long,RAO Yue,LI Xue-Bao,XU Wen-Liang*   

  1. Hubei Key Laboratory of Genetic Regulation and Integrative Biology / College of Life Sciences, Central China Normal University, Wuhan 430079, China
  • Received:2012-07-10 Revised:2012-10-09 Published:2013-03-12 Published online:2012-12-11
  • Contact: 许文亮, E-mail: wenliangxu@yahoo.com.cn, Tel: 027-67867814

摘要:

富含脯氨酸的蛋白(proline-rich proteins, PRPs)代表一类富含脯氨酸和羟脯氨酸的细胞壁结构蛋白质,最先在伤害诱导的胡萝卜贮藏根中被发现。越来越多的证据显示这类蛋白在应答多种生物和非生物胁迫中起作用。我们之前从棉花cDNA文库中分离了一个命名为GhPRP5的编码富含脯氨酸蛋白的基因,为研究其功能,构建了GhPRP5的过量表达载体,转化拟南芥,获得GhPRP5高表达的8个株系的纯合体。在正常培养条件下,转基因株系和野生型种子的萌发率一致,但盐胁迫和ABA处理显著抑制了转基因拟南芥株系种子的萌发。盐胁迫条件下野生型的绿苗率明显高于转基因拟南芥株系,与正常生长条件相比,ABA处理抑制转基因拟南芥主根伸长的程度更大。利用Quantitative RT-PCR技术分析几个胁迫相关标记基因的表达情况表明,盐和ABA诱导了RD29ARD29BKIN1的表达,但诱导水平在转基因株系和野生型中不一样,说明GhPRP5参与调控拟南芥胁迫相关标记基因的表达,但具体参与的胁迫应答信号传导途径仍需进一步研究。

关键词: 棉花GhPRP5, 转基因拟南芥, 盐胁迫, ABA

Abstract:

Pro-rich proteins (PRPs) represent one family of Pro- and Hyp-rich structural cell wall proteins that are initially identified as wound-induced gene products in carrot storage roots. Accumulated evidences demonstrate that PRP genes are regulated by various abiotic and biotic stresses and may play a role in plant responses to changes in living conditions. In our previous study, a gene encoding a proline-rich protein designated as GhPRP5 was isolated from cotton cDNA libraries. To validate its function, in this study, we introduced the coding region of GhPRP5into the vector pBI121 under the control of the CaMV 35S promoter and then transformed the vector into Arabidopsis thaliana. Eight independent T4 homozygous lines with high expression of GhPRP5 were obtained. Germination rate of transgenic lines overexpressing GhPRP5 was not affected under normal conditions; however, salt stress and ABA significantly inhibited the germination of the transgenic lines. When growing on media with NaCl, the GhPRP5-overexpressed plants displayed much less cotyledon greening rate compared with the wild type. In contrast to the normal growth conditions, ABA inhibited the elongation of primary root more severely in the transgenic lines. Quantitative RT-PCR technique was used to analyze the transcription of several stress gene markers (RD29A, RD29B, KIN1,and ABI1) in the transgenic lines and the wild type plants under salt stress and ABA treatments. Expressions of RD29A, RD29B, and KIN1 were induced by ABA and NaCl in the transgenic and the wild type plants, though the induction levels in the transgenic lines were different from those in the wild type. This finding suggests that GhPRP5 is implicated in the regulation of stress gene expression in Arabidopsis. The plant stress signal transduction pathway in which GhPRP5 may be involved needs to be further studied.

Key words: GhPRP5, Transgenic Arabidopsis, Salt stress, ABA

[1]Chen J, Varner J E. Isolation and characterization of cDNA clones for carrot extensin and proline-rich 33-kDa protein. Proc Natl Acad Sci USA, 1985, 82: 4399–4403



[2]Hong J C, Nagao R T, Key J L. Developmentally regulated expression of soybean proline-rich cell wall protein genes. Plant Cell, 1989, 1: 937–943



[3]Ye Z H, Varner J E. Tissue-specific expression of cell wall proteins in developing soybean tissues. Plant Cell, 1991, 3: 23–27



[4]Coupe S A, Taylor J E, Isaac P G, Roberts J A. Identification and characterization of a proline-rich mRNA that accumulates during pod development in oilseed rape (Brassica napus L.). Plant Mol Biol, 1993, 23: 1223–1232



[5]Choi D W, Song J Y, Kwon Y M, Kim S G. Characterization of a cDNA encoding a proline-rich 14 kD protein in developing cortical cells of the roots of bean (Phaseolus vulgaris) seedlings. Plant Mol Biol, 1996, 30: 973–982



[6]Vignols F, Jose-Estanyol M, Caparros-Ruiz D, Rigau J, Puigdomenech P. Involvement of a maize proline-rich protein in secondary cell wall formation as deduced from its specific mRNA localization. Plant Mol Biol, 1999, 39: 945–952



[7]Ulrich M, Nathalie R, Bernd M. StGCPRP, a potato gene strongly expressed in stomatal guard cells, defines a novel type of repetitive proline-rich proteins1. Plant Physiol, 2000, 122: 677–686



[8]Fowler T J, Bernhardt C, Tierney M L. Characterization and expression of four proline-rich cell wall protein genes in Arabidopsis encoding two distinct subsets of multiple domain proteins. Plant Physiol, 1999, 121: 1081–1092



[9]Bernhardt C, Tierney M L. Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation. Plant Physiol, 2000, 122: 705–714



[10]Deutch C E, Winicov I. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol Biol, 1995, 27: 411–418



[11]Goodwin W, Pallas J A, Jenkins G I. Transcripts of a gene encoding a putative cell wall-plasma membrane linker protein are specifically cold-induced in Brassica napus. Plant Mol Biol, 1996, 31: 771–781



[12]He C Y, Zhang J S, Chen S Y. A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet, 2002, 104: 1125–1131



[13]Showalter A M, Keppler B, Lichtenberg J, Gu D, Welch L R. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol, 2010, 153: 485–513



[14]Gothandam K M, Nalini E, Karthikeyan S, Shin J S. OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Mol Biol, 2010, 72: 125–135



[15]Zhang Y, Schläppi M. Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants. Planta, 2007, 227: 233–243



[16]Xu D, Huang X, Xu Z Q, Schläppi M. The HyPRP gene EARLI1 has an auxiliary role for germinability and early seedling development under low temperature and salt stress conditions in Arabidopsis thaliana. Planta, 2011, 234: 565–577



[17]Feng J X, Ji S J, Shi Y H, Xu Y, Wei G, Zhu Y X. Analysis of five differentially expressed gene families in fast elongating cotton fiber. Acta Biochim Biophys Sin, 2004, 36: 51–56



[18]Li X-B(李学宝), Huang G-Q(黄耿青), Xu W-L(许文亮), Wang X-L(王秀兰), Wang H(汪虹). Isolation of the cotton genes that encoded cell wall proteins and their expression profile in cotton fibers. J Central China Norm Univ (Nat Sci) (华中师范大学学报•自然科学版), 2005, 39(4): 509–513 (in Chinese with English abstract)



[19]Xu W-L(许文亮), Huang G-Q(黄耿青), Wang X-L(王秀兰), Wang H(汪虹), Li X-B(李学宝). Molecular characterization and expression analysis of five novel genes encoding proline-rich proteins in cotton (Gossypium hirsutum). Prog Biochem Biophys (生物化学与生物物理进展), 2007, 34(5): 509–517 (in Chinese with English abstract)



[20]Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743



[21]Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, Xu Y H, Zhang X Y, Zhang D P. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 2007, 19: 3019–3036



[22]Li G, Tai F J, Zheng Y, Luo J, Gong S Y, Zhang Z T, Li X B. Two cotton Cys2/His2-type zinc-finger proteins, GhDi19-1 and GhDi19-2, are involved in plant response to salt/drought stress and abscisic acid signaling. Plant Mol Biol, 2010, 74: 437–452



[23]Li X B, Fan X P, Wang X L, Cai L, Yang W C. The cotton Actin1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 2005, 17: 859–875



[24]Priyanka B, Sekhar K, Sunita T, Reddy V D, Rao K V. Characterization of expressed sequence tags (ESTs) of pigeonpea (Cajanus cajan L.) and functional validation of selected genes for abiotic stress tolerance in Arabidopsis thaliana. Mol Genet Genomics, 2010, 283: 273–287



[25]Priyanka B, Sekhar K, Reddy V D, Rao K V. Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance. Plant Biotech J, 2010, 8: 76–87



[26]Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salinity stress. Plant Cell, 1994, 6: 251–264



[27]Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol, 1997, 115: 327–334



[28]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273



[29]Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J, 2001, 25: 295–303



[30]Tahtiharju S, Sangwan V, Monroy A F, Dhindsa R S, Borg M. The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta, 1997, 203: 442–447



[31]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391–1406



[32]Thomashow M F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599



[33]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin. Plant Biol, 2000, 3: 217–223



[34]Kim K N, Cheong Y H, Grant J J, Pandey G K, Luan S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell, 2003, 15: 411–423

[1] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[2] 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221.
[3] 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859.
[4] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.
[5] 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439.
[6] 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480.
[7] 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011.
[8] 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247.
[9] 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818.
[10] 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922.
[11] 李润枝, 靳晴, 李召虎, 王晔, 彭真, 段留生. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应[J]. 作物学报, 2020, 46(11): 1810-1816.
[12] 陈晓晶,刘景辉,杨彦明,赵洲,徐忠山,海霞,韩宇婷. 盐胁迫对燕麦叶片生理指标和差异蛋白组学的影响[J]. 作物学报, 2019, 45(9): 1431-1439.
[13] 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364.
[14] 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028.
[15] 毛花英,刘峰,苏炜华,黄宁,凌辉,张旭,王文举,李聪娜,汤翰臣,苏亚春,阙友雄. 甘蔗磷脂酰肌醇转运蛋白基因ScSEC14响应干旱和盐胁迫[J]. 作物学报, 2018, 44(6): 824-835.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!