作物学报 ›› 2013, Vol. 39 ›› Issue (03): 563-569.doi: 10.3724/SP.J.1006.2013.00563
• 研究简报 • 上一篇
张德静,秦丽霞,李龙,饶玥,李学宝,许文亮*
ZHANG De-Jing,QIN Li-Xia,LI Long,RAO Yue,LI Xue-Bao,XU Wen-Liang*
摘要:
[1]Chen J, Varner J E. Isolation and characterization of cDNA clones for carrot extensin and proline-rich 33-kDa protein. Proc Natl Acad Sci USA, 1985, 82: 4399–4403[2]Hong J C, Nagao R T, Key J L. Developmentally regulated expression of soybean proline-rich cell wall protein genes. Plant Cell, 1989, 1: 937–943[3]Ye Z H, Varner J E. Tissue-specific expression of cell wall proteins in developing soybean tissues. Plant Cell, 1991, 3: 23–27[4]Coupe S A, Taylor J E, Isaac P G, Roberts J A. Identification and characterization of a proline-rich mRNA that accumulates during pod development in oilseed rape (Brassica napus L.). Plant Mol Biol, 1993, 23: 1223–1232[5]Choi D W, Song J Y, Kwon Y M, Kim S G. Characterization of a cDNA encoding a proline-rich 14 kD protein in developing cortical cells of the roots of bean (Phaseolus vulgaris) seedlings. Plant Mol Biol, 1996, 30: 973–982[6]Vignols F, Jose-Estanyol M, Caparros-Ruiz D, Rigau J, Puigdomenech P. Involvement of a maize proline-rich protein in secondary cell wall formation as deduced from its specific mRNA localization. Plant Mol Biol, 1999, 39: 945–952[7]Ulrich M, Nathalie R, Bernd M. StGCPRP, a potato gene strongly expressed in stomatal guard cells, defines a novel type of repetitive proline-rich proteins1. Plant Physiol, 2000, 122: 677–686[8]Fowler T J, Bernhardt C, Tierney M L. Characterization and expression of four proline-rich cell wall protein genes in Arabidopsis encoding two distinct subsets of multiple domain proteins. Plant Physiol, 1999, 121: 1081–1092[9]Bernhardt C, Tierney M L. Expression of AtPRP3, a proline-rich structural cell wall protein from Arabidopsis, is regulated by cell-type-specific developmental pathways involved in root hair formation. Plant Physiol, 2000, 122: 705–714[10]Deutch C E, Winicov I. Post-transcriptional regulation of a salt-inducible alfalfa gene encoding a putative chimeric proline-rich cell wall protein. Plant Mol Biol, 1995, 27: 411–418[11]Goodwin W, Pallas J A, Jenkins G I. Transcripts of a gene encoding a putative cell wall-plasma membrane linker protein are specifically cold-induced in Brassica napus. Plant Mol Biol, 1996, 31: 771–781[12]He C Y, Zhang J S, Chen S Y. A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet, 2002, 104: 1125–1131[13]Showalter A M, Keppler B, Lichtenberg J, Gu D, Welch L R. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol, 2010, 153: 485–513[14]Gothandam K M, Nalini E, Karthikeyan S, Shin J S. OsPRP3, a flower specific proline-rich protein of rice, determines extracellular matrix structure of floral organs and its overexpression confers cold-tolerance. Plant Mol Biol, 2010, 72: 125–135[15]Zhang Y, Schläppi M. Cold responsive EARLI1 type HyPRPs improve freezing survival of yeast cells and form higher order complexes in plants. Planta, 2007, 227: 233–243[16]Xu D, Huang X, Xu Z Q, Schläppi M. The HyPRP gene EARLI1 has an auxiliary role for germinability and early seedling development under low temperature and salt stress conditions in Arabidopsis thaliana. Planta, 2011, 234: 565–577[17]Feng J X, Ji S J, Shi Y H, Xu Y, Wei G, Zhu Y X. Analysis of five differentially expressed gene families in fast elongating cotton fiber. Acta Biochim Biophys Sin, 2004, 36: 51–56[18]Li X-B(李学宝), Huang G-Q(黄耿青), Xu W-L(许文亮), Wang X-L(王秀兰), Wang H(汪虹). Isolation of the cotton genes that encoded cell wall proteins and their expression profile in cotton fibers. J Central China Norm Univ (Nat Sci) (华中师范大学学报•自然科学版), 2005, 39(4): 509–513 (in Chinese with English abstract)[19]Xu W-L(许文亮), Huang G-Q(黄耿青), Wang X-L(王秀兰), Wang H(汪虹), Li X-B(李学宝). Molecular characterization and expression analysis of five novel genes encoding proline-rich proteins in cotton (Gossypium hirsutum). Prog Biochem Biophys (生物化学与生物物理进展), 2007, 34(5): 509–517 (in Chinese with English abstract)[20]Clough S J, Bent A F. Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J, 1998, 16: 735–743[21]Zhu S Y, Yu X C, Wang X J, Zhao R, Li Y, Fan R C, Shang Y, Du S Y, Wang X F, Wu F Q, Xu Y H, Zhang X Y, Zhang D P. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell, 2007, 19: 3019–3036[22]Li G, Tai F J, Zheng Y, Luo J, Gong S Y, Zhang Z T, Li X B. Two cotton Cys2/His2-type zinc-finger proteins, GhDi19-1 and GhDi19-2, are involved in plant response to salt/drought stress and abscisic acid signaling. Plant Mol Biol, 2010, 74: 437–452[23]Li X B, Fan X P, Wang X L, Cai L, Yang W C. The cotton Actin1 gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell, 2005, 17: 859–875[24]Priyanka B, Sekhar K, Sunita T, Reddy V D, Rao K V. Characterization of expressed sequence tags (ESTs) of pigeonpea (Cajanus cajan L.) and functional validation of selected genes for abiotic stress tolerance in Arabidopsis thaliana. Mol Genet Genomics, 2010, 283: 273–287[25]Priyanka B, Sekhar K, Reddy V D, Rao K V. Expression of pigeonpea hybrid-proline-rich protein encoding gene (CcHyPRP) in yeast and Arabidopsis affords multiple abiotic stress tolerance. Plant Biotech J, 2010, 8: 76–87[26]Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low temperature, or high-salinity stress. Plant Cell, 1994, 6: 251–264[27]Shinozaki K, Yamaguchi-Shinozaki K. Gene expression and signal transduction in water-stress response. Plant Physiol, 1997, 115: 327–334[28]Zhu J K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol, 2002, 53: 247–273[29]Merlot S, Gosti F, Guerrier D, Vavasseur A, Giraudat J. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J, 2001, 25: 295–303[30]Tahtiharju S, Sangwan V, Monroy A F, Dhindsa R S, Borg M. The induction of kin genes in cold-acclimating Arabidopsis thaliana. Evidence of a role for calcium. Planta, 1997, 203: 442–447[31]Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell, 1998, 10: 1391–1406[32]Thomashow M F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol, 1999, 50: 571–599[33]Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin. Plant Biol, 2000, 3: 217–223[34]Kim K N, Cheong Y H, Grant J J, Pandey G K, Luan S. CIPK3, a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis. Plant Cell, 2003, 15: 411–423 |
[1] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[2] | 雷新慧, 万晨茜, 陶金才, 冷佳俊, 吴怡欣, 王家乐, 王鹏科, 杨清华, 冯佰利, 高金锋. 褪黑素与2,4-表油菜素内酯浸种对盐胁迫下荞麦发芽与幼苗生长的促进效应[J]. 作物学报, 2022, 48(5): 1210-1221. |
[3] | 许静, 高景阳, 李程成, 宋云霞, 董朝沛, 王昭, 李云梦, 栾一凡, 陈甲法, 周子键, 吴建宇. 过表达ZmCIPKHT基因增强植物耐热性[J]. 作物学报, 2022, 48(4): 851-859. |
[4] | 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592. |
[5] | 刘亚文, 张红燕, 曹丹, 李兰芝. 基于多平台基因表达数据的水稻干旱和盐胁迫相关基因预测[J]. 作物学报, 2021, 47(12): 2423-2439. |
[6] | 韦还和, 张徐彬, 葛佳琳, 陈熙, 孟天瑶, 杨洋, 熊飞, 陈英龙, 戴其根. 盐胁迫对水稻颖花形成及籽粒充实的影响[J]. 作物学报, 2021, 47(12): 2471-2480. |
[7] | 辛正琦, 代欢欢, 辛余凤, 何潇, 谢海艳, 吴能表. 盐胁迫下外源2,4-表油菜素内酯对颠茄氮代谢及TAs代谢的影响[J]. 作物学报, 2021, 47(10): 2001-2011. |
[8] | 韦还和,葛佳琳,张徐彬,孟天瑶,陆钰,李心月,陶源,丁恩浩,陈英龙,戴其根. 盐胁迫下粳稻品种南粳9108分蘖特性及其与群体生产力的关系[J]. 作物学报, 2020, 46(8): 1238-1247. |
[9] | 韩乐,杜萍萍,肖凯. 小麦脱落酸受体基因TaPYR1介导植株抵御干旱逆境功能研究[J]. 作物学报, 2020, 46(6): 809-818. |
[10] | 李辉, 李德芳, 邓勇, 潘根, 陈安国, 赵立宁, 唐慧娟. 红麻海藻糖生物合成关键酶基因HcTPPJ的克隆及响应逆境的表达分析[J]. 作物学报, 2020, 46(12): 1914-1922. |
[11] | 李润枝, 靳晴, 李召虎, 王晔, 彭真, 段留生. 水杨酸提高甘草种子萌发和幼苗生长对盐胁迫耐性的效应[J]. 作物学报, 2020, 46(11): 1810-1816. |
[12] | 陈晓晶,刘景辉,杨彦明,赵洲,徐忠山,海霞,韩宇婷. 盐胁迫对燕麦叶片生理指标和差异蛋白组学的影响[J]. 作物学报, 2019, 45(9): 1431-1439. |
[13] | 李旭凯,李任建,张宝俊. 利用WGCNA鉴定非生物胁迫相关基因共表达网络[J]. 作物学报, 2019, 45(9): 1349-1364. |
[14] | 田文刚,朱雪峰,宋雯,程文翰,薛飞,朱华国. 异源表达棉花S-腺苷甲硫氨酸脱羧酶(GhSAMDC1)基因提高了拟南芥抗盐能力[J]. 作物学报, 2019, 45(7): 1017-1028. |
[15] | 毛花英,刘峰,苏炜华,黄宁,凌辉,张旭,王文举,李聪娜,汤翰臣,苏亚春,阙友雄. 甘蔗磷脂酰肌醇转运蛋白基因ScSEC14响应干旱和盐胁迫[J]. 作物学报, 2018, 44(6): 824-835. |
|