欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1469-1477.doi: 10.3724/SP.J.1006.2013.01469

• 耕作栽培·生理生化 • 上一篇    下一篇

基于冠层反射光谱的小麦白粉病严重度估测

冯伟,王晓宇,宋晓,贺利,王永华,郭天财*   

  1. 河南农业大学 / 国家小麦工程技术研究中心,河南郑州 450002
  • 收稿日期:2012-12-13 修回日期:2013-04-22 出版日期:2013-08-12 网络出版日期:2013-05-20
  • 通讯作者: 郭天财, E-mail: tcguo888@sina.com
  • 基金资助:

    本研究由国家自然科学基金项目(30900867), 国家公益性行业(农业)科研专项(201203096)和国家现代农业产业技术体系建设专项(MATS)资助。

Estimation of Severity Level of Wheat Powdery Mildew Based on Canopy Spectral Reflectance

FENG Wei,WANG Xiao-Yu,SONG Xiao,HE Li,WANG Yong-Hua,GUO Tian-Cai*   

  1. Henan Agricultural University / National Engineering Research Center for Wheat, Zhengzhou 450002, China
  • Received:2012-12-13 Revised:2013-04-22 Published:2013-08-12 Published online:2013-05-20
  • Contact: 郭天财, E-mail: tcguo888@sina.com

摘要:

明确小麦白粉病冠层光谱敏感波段并估算病情严重度,是大面积高空遥感监测小麦白粉病、实现精确防控的基础。采用人工诱发的大田、盆栽和病圃试验,测量不同生育时期对不同发病等级的小麦白粉病冠层光谱,并同步调查发病严重度。结果表明,可见光350~710 nm光谱反射率随病情加重呈上升趋势,580~710 nm为遥感监测白粉病的敏感波段,近红外波段光谱反射率在病害处理间变幅较大,且与病情严重度相关性较差。修正型病情指数较常规病情指数与对应光谱反射率的相关性显著提高。利用高光谱特征参数与白粉病严重度间的相关回归分析,红边宽度最适宜指示白粉病发生及发展态势,拟合精度(R2)0.811,检验相对误差(RE)17.7%,而mND705SIPICTR2TSAVI在相关分析中也表现相对较好(r>0.6),但由于试验间兼容性差, 不宜建立统一回归方程。以相对光谱指数ΔMSAVIΔmND705与白粉病严重度建立的模型决定系数较高(R2>0.76)RE分别为18.4%19.4%可较好反演冠层尺度病情严重度。可见,小麦白粉病冠层光谱特征明显,建立的病害反演模型精度高,对精确防控具有应用价值。

关键词: 小麦白粉病, 高光谱, 病情严重度, 反演模型

Abstract:

Understanding spectrum characteristics and sensitive bands of wheat infected by Blumeria graminis f. sp. tritici (Bgt) and estimatiing the disease severity will provide a basis for monitoring and subsequently accurately controlling powdery mildew in wheat planted in large scales using aerial remote sensing. Canopy reflectance of winter wheat infected by artificial inoculationof Bgt with different severity levels was measured in disease nursery, field, and pot experiments, and the severity levels in different growth phases were also investigated at the same time. The results indicated that spectrum reflectance increased significantly in visible light region (350–710 nm) with the increase of disease severity level, and the light region between 580 nm to 710 nm was the sensitive bands to wheat powdery mildew, which varied greatly in near-infrared region (710–1100 nm) across treatments with different disease severity levels. However, the correlation between spectrum reflectance and traditional disease index (DI) was low. When the conventionalDI was replaced by modified DI, the correlation was improved significantly. An integrated linear regression equation of  disease severity level to red edge width (Lwidth) described the dynamic pattern of disease severity level in wheat, with R2 of 0.811 and relative error (RE) of 17.7%. Besides, correlation coefficients between spectral parameters (mND705, SIPI, CTR2, and TSAVI) and modified DI were higher than 0.6. No common integrated regression equation could be establishhed due to poor compatibility among experiments. The relative spectral indices (ΔMSAVI and ΔmND705) exhibited high correlations (R2 > 0.76) with the disease sensitive level, with RE values of 18.4% and 19.4%, respectively. The results suggested that the models with sensitive spectral indices could retrieve and forecast the disease severity level accurately in a large area.

Key words: Wheat powdery mildew, Hyperspectral remote sensing, Severity level, Retrieval model

[1]Maxwell J J, Lyerly J H, Cowger C, Marshall D, Brown-Guedira G, Paul Murphy J. MlAG12: a Triticum timopheevii-derived powdery mildew resistance gene in common wheat on chromosome 7AL. Theor Appl Genet, 2009, 119: 1489–1495



[2]Lin J-Y(刘金元), Tao W-J(陶文静), Duan X-Y(段霞瑜), Xiang Q-J(向齐君), Liu D-J(刘大钧), Chen P-D(陈佩度). Molecular marker assisted identification of Pm genes involved in the powdery mildew resistant wheat cultivars (1ines). Acta Phytopathol Sin (植物病理学报), 2000, 30(2): 133–139 (in Chinese with English abstract)



[3]Wu D(吴迪), Zhu D-S(朱登胜), He Y(何勇), Zhang C-Q(张传清), Feng L(冯雷). Nondestructive detection of grey mold of eggplant based on ground multi-spectral imaging sensor. Spectroscopy Spectral Anal (光谱学与光谱分析), 2008, 28(7): 1496–1500 (in Chinese with English abstract)



[4]Bawden F C. Infra-red photography and plant virus diseases. Nature, 1933, 132: 168



[5]Taubenhaus J J, Ezekiel W N, Neblette C B. Airplane photography in the study of cotton root rot. Phytopathology, 1929, 19: 1025–1029



[6]Raikes C, Burpee L L. Use of multispectral radiometry for assessment of rhizoctonia blight in creeping bentgrass. Phytopathology, 1998, 88: 446–449



[7]Wang D, Dowell F E, Lan Y, Pasikatan M, Maghirang E. Determining pecky rice kernels using visible and near-infrared spectroscopy. Int J Food Properties, 2002, 5: 629–639



[8]Cheng T, Rivard B, Sánchez-Azofeifa G A, Feng J, Calvo-Polanco M. Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sens Environ, 2010, 114: 899–910



[9]Zhang J-C(张竞成), Yuan L(袁琳), Wang J-H(王纪华), Luo J-H(罗菊花), Du S-Z(杜世州), Huang W-J(黄文江). Research progress of crop diseases and pests monitoring based on remote sensing. Trans CSAE (农业工程学报), 2012, 28(20): 1–11 (in Chinese with English abstract)



[10]Zhang M H, Qin Z H, Liu X, Ustin S L. Detection of stress in tomatoes induced by late blight disease in California, USA, using hyperspectral remote sensing. Int J Appl Earth Observ Geoinf, 2003, 4: 295–310



[11]Huang M-Y(黄木易), Wang J-H(王纪华), Huang W-J(黄文江), Huang Y-D(黄义德), Zhao C-J(赵春江), Wan A-M(万安民). Hyperspectral character of stripe rust on winter wheat and monitoring by remote sensing. Trans CSAE (农业工程学报), 2003, 19(6): 154–158 (in Chinese with English abstract)



[12]Jiang J B(蒋金豹), Chen Y H(陈云浩), Huang W J(黄文江). Using the Distance between hyperspectral red edge position and yellow edge position to identify wheat yellow rust disease. Spectroscopy Spectral Anal (光谱学与光谱分析), 2010, 30(6): 1614–1618 (in Chinese with English abstract)



[13]Guo J-B(郭洁滨), Huang C(黄冲), Wang H-G(王海光), Sun Z-Y(孙振宇), Ma Z-H(马占鸿). Disease index inversion of wheat stripe rust on different wheat varieties with hyperspectral remote sensing. Spectroscopy Spectral Anal (光谱学与光谱分析), 2009, 29(12): 3353–3357 (in Chinese with English abstract) 



[14]Riedell W E, Blackmer T M. Leaf reflectance spectra of cereal aphid-damaged wheat. Crop Sci, 1999, 39: 1835–1840



[15]Yang Z, Rao M N, Elliott N C, Kindler S D, Popham T W. Differentiating stress induced by greenbugs and Russian wheat aphids in wheat using remote sensing. Comput Electron Agric, 2009, 67: 64–70



[16]Qiao H-B(乔红波), Cheng D-F(程登发), Sun J-R(孙京瑞), Tian Z(田喆), Chen L(陈林), Lin F-R(林芙蓉). Effects of wheat aphid on spectrum reflectance of the wheat canopy. Plant Prot (植物保护), 2005, 31(2): 21–26 (in Chinese with English abstract)



[17]Kobayashi T, Kanda E, Kitada K, Ishiguro K, Torigoe Y. Detection of rice panicle blast with multi-spectral radiometer and the potential of using airborne multi-spectral scanner. Phytopathology, 2001, 91: 316–323



[18]Cheng S-X(程术希), Shao Y-N(邵咏妮), Wu D(吴迪), He Y(何勇). Determination of rice leaf blast disease level based on visible near infrared spectroscopy. J Zhejiang Univ (Agric & Life Sci) (浙江大学学报?农业与生命科学版), 2011, 37(3): 307–311 (in Chinese with English abstract)



[19]Chen B(陈兵), Wang K-R(王克如), Li S-K(李少昆), Jin X-L(金秀良), Chen J-L(陈江鲁), Zhang D-S(张东升). The effects of disease stress on spectra reflectance and chlorophyll fluorescence characteristics of cotton leaves. Trans CSAE (农业工程学报), 2011, 27(9): 86–92 (in Chinese with English abstract)



[20]Jing X(竞霞), Huang W-J(黄文江), Wang J-H(王纪华), Wang J-D(王锦地), Wang K-R(王克如). Hyperspectral inversion models on verticillium wilt severity of cotton leaf. Spectroscopy Spectral Anal (光谱学与光谱分析), 2009, 29(12): 3348–3352 (in Chinese with English abstract)



[21]Zhang J C, Pu R L, Wang J H, Huang W J, Yuan L, Luo J H. Detecting powdery mildew of winter wheat using leaf level hyperspectral measurements. Comput Electron Agric, 2012, 85: 13–23



[22]Franke J, Menz G. Multi-temporal wheat disease detection by multi-spectral remote sensing. Precision Agric, 2007, 8: 161–172



[23]Peñuelas J, Baret F, Filella I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 1995, 31: 221–230



[24]Baret F, Guyot G, Major D J. TSAVI: a vegetation index which minimizes soil brightness effects on LAI and APAR estimation. In: Proc. IGARRS’89. 12th Canadian Symposium on Remote Sensing, Vol. 3, Vancouver, Canada, 1989, pp 1355–1358



[25]Qi J, Chehbouni A, Huete A R, Kerr Y H. Modified soil adjusted vegetation index (MSAVI). Remote Sens Environ, 1994, 48: 119–126



[26]Merzlyak M N, Gitelson A A, Chivkunova O B, Rakitin V Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol Plant, 1999, 106: 135–141



[27]Carter G A, Miller R L. Early detection of plant stress by digital imaging within narrow stress sensitive wavebands. Remote Sens Environ, 1994, 50: 295–302



[28]Sims D A, Gamon J A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing Environ, 2002, 81: 337–354



[29]Haboudane D, Miller J R, Pattey E, Zarco-Tejada P J, Strachan I. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: modeling and validation in the context of precision agriculture. Remote Sensing Environ, 2004, 90: 337–352



[30]Kokaly R F, Clark R N. Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing Environ, 1999, 67: 267–287



[31]Miller J R, Hare E W, Wu J. Quantitative characterization of the vegetation red edge reflectance: 1. An inverted-Gaussian reflectance model. Int J Remote Sensing, 1990, 11: 1755–1773



[32]Wang X Z(王秀珍), Huang J F(黄敬峰), Li Y M(李云梅), Wang R C(王人潮). Correlation between chemical contents of leaves and characteristic variables of hyperspectra on rice field. Trans CSAE (农业工程学报), 2003, 19(2): 144–148 (in Chinese with English abstract)



[33]Liu L-Y(刘良云), Song X-Y(宋晓宇), Li C-J(李存军), Qi L(齐腊), Huang W-J(黄文江), Wang J-H(王纪华). Monitoring and evaluation of the diseases of and yield winter wheat from multi-temporal remotely-sensed data. Trans CSAE (农业工程学报), 2009, 25: 137–143 (in Chinese with English abstract)



[34]Zhang D-Y(张东彦), Zhang J-C(张竞成), Zhu D-Z(朱大洲), Wang J-H(王纪华), Luo J-H(罗菊花), Zhao J-L(赵晋陵), Huang W-J(黄文江). Investigation of the hyperspectral image characteristics of wheat leaves under different stress. Spectroscopy Spectral Anal (光谱学与光谱分析), 2011, 31(4): 1101–1105 (in Chinese with English abstract)

[1] 李金敏, 陈秀青, 杨琦, 史良胜. 基于高光谱的水稻叶片氮含量估计的深度森林模型研究[J]. 作物学报, 2021, 47(7): 1342-1350.
[2] 李宗飞,苏继霞,费聪,李阳阳,刘宁宁,戴宇祥,张开祥,王开勇,樊华,陈兵. 基于高光谱数据的滴灌甜菜叶片全氮含量估算[J]. 作物学报, 2020, 46(4): 557-570.
[3] 吴亚鹏,贺利,王洋洋,刘北城,王永华,郭天财,冯伟. 冬小麦生物量及氮积累量的植被指数动态模型研究[J]. 作物学报, 2019, 45(8): 1238-1249.
[4] 依尔夏提•阿不来提,买买提•沙吾提,白灯莎•买买提艾力,安申群,马春玥. 基于随机森林法的棉花叶片叶绿素含量估算[J]. 作物学报, 2019, 45(1): 81-90.
[5] 高林,杨贵军,李长春,冯海宽,徐波,王磊,董锦绘,付奎. 基于光谱特征与PLSR结合的叶面积指数拟合方法的无人机画幅高光谱遥感应用[J]. 作物学报, 2017, 43(04): 549-557.
[6] 齐波,张宁, 赵团结,邢光南,赵晋铭*,盖钧镒. 利用高光谱技术估测大豆育种材料的叶面积指数[J]. 作物学报, 2015, 41(07): 1073-1085.
[7] 姜延涛,许韬,段霞瑜*,周益林. 品种混种控制小麦白粉病及其对小麦产量和蛋白质含量的影响[J]. 作物学报, 2015, 41(02): 276-285.
[8] 邢莉萍,钱晨,李明浩,曹爱忠,王秀娥,陈佩度. 小麦Mlo反义基因的转化及转基因植株的白粉病抗性分析[J]. 作物学报, 2013, 39(03): 431-439.
[9] 吴琼,齐波,赵团结,姚鑫锋,朱艳,盖钧镒. 高光谱遥感估测大豆冠层生长和籽粒产量的探讨[J]. 作物学报, 2013, 39(02): 309-318.
[10] 陈兵,韩焕勇,王方永,刘政,邓福军,林海,余渝,李少昆,王克如,肖春华. 利用光谱红边参数监测黄萎病棉叶叶绿素和氮素含量[J]. 作物学报, 2013, 39(02): 319-329.
[11] 王华忠, 章珍, 贺洋, 岳洁瑜. 病原侵染早期小麦抗白粉病性状的构成因素剖析和QTL定位分析[J]. 作物学报, 2011, 37(07): 1219-1228.
[12] 章珍, 刘新红, 翟洪翠, 王华忠. 小麦Pm21基因调控的白粉菌早期侵染抑制和寄主细胞反应[J]. 作物学报, 2011, 37(01): 67-73.
[13] 曹世勤, 骆惠生, 武翠平, 金社林, 王晓鸣, 朱振东, 贾秋珍, 黄瑾, 张勃, 尚勋武. 甘肃省主要小麦生产品种(系)及抗源材料抗白粉病基因推导分析[J]. 作物学报, 2010, 36(12): 2107-2115.
[14] 田永超,杨杰,姚霞,曹卫星,朱艳. 利用叶片高光谱指数预测水稻群体叶层全氮含量[J]. 作物学报, 2010, 36(09): 1529-1537.
[15] 李根桥,房体麟,朱婕,高亮亮,李闪,解超杰,杨作民,孙其信,刘志勇. 普通小麦品种Brock抗白粉病基因分子标记定位[J]. 作物学报, 2009, 35(9): 1613-1619.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!