欢迎访问作物学报,今天是

作物学报 ›› 2013, Vol. 39 ›› Issue (08): 1462-1468.doi: 10.3724/SP.J.1006.2013.01462

• 耕作栽培·生理生化 • 上一篇    下一篇

剪根与水分胁迫对小麦单根和细胞导水率及TaPIP基因表达的影响

王卫锋1,3,杨晓青1,3,张岁岐1,2,*,山仑1,2   

  1. 1中国科学院水利部水土保持研究所 / 黄土高原土壤侵蚀与旱地农业国家重点实验室,陕西杨凌 712100; 2西北农林科技大学,陕西杨凌 712100;3中国科学院研究生院,北京 100049
  • 收稿日期:2012-12-19 修回日期:2013-03-11 出版日期:2013-08-12 网络出版日期:2013-04-23
  • 通讯作者: 张岁岐, E-mail: sqzhang@ms.iswc.ac.cn, Tel: 029-87010897
  • 基金资助:

    本研究由国家自然科学基金项目(30971714), 国家重点基础研究发展计划(973计划)项目(2009CB1186604)和教育部高等学校学科创新引智计划(B12007)项目资助。

Effects of Root Excision and Water Stress on Root Hydraulics and TaPIPs Expression in Wheat Seedlings

WANG Wei-Feng1,3,YANG Xiao-Qing1,3,ZHANG Sui-Qi1,2,*,SHAN Lun1,2   

  1. 1 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau / Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, 712100, China; 2 Northwest A&F University, Yangling 712100, China; 3 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2012-12-19 Revised:2013-03-11 Published:2013-08-12 Published online:2013-04-23
  • Contact: 张岁岐, E-mail: sqzhang@ms.iswc.ac.cn, Tel: 029-87010897

摘要:

剪去小麦部分根系能瞬间打破其水分平衡,研究根系导水特性对剪根的响应有助于解释静水压对作物根系吸水的调节机制。通过对苗期小麦(Triticum aestivum)剪根与水分胁迫处理,用压力探针技术测定单根和细胞两种尺度上的根导水特性变化,以及根中TaPIP1;2TaPIP2;5的转录调节变化。结果显示,剪根处理或水分胁迫处理使叶片蒸腾速率和气孔导度均显著低于对照,而单根导水率和细胞导水率均与对照无显著差异。剪根处理的叶片蒸腾速率、气孔导度、叶水势、单根导水率和细胞导水率均显著高于水分胁迫处理,而剪根且水分胁迫处理的各参数均显著低于其他处理。各处理的单根导水率与细胞导水率显著正相关。各处理根中TaPIP1;2TaPIP2;5相对mRNA含量的变化规律与单根和细胞导水率的变化规律相似。剪根处理显著上调了TaPIP1;2TaPIP2;5转录,水分胁迫处理显著下调了其转录,但TaPIP1;2TaPIP2;5在剪根且水分胁迫处理中的转录水平最低。这些结果表明,小麦的根导水特性在单根尺度和细胞尺度上具有一致性;剪根短期内能够增加小麦幼苗的水分敏感性。推测TaPIP1;2TaPIP2;5参与了静水压对小麦根导水特性的调节过程。

关键词: 小麦, 剪根, 水分胁迫, 单根导水率, 细胞导水率, TaPIPs

Abstract:

Root excision can break water balance between the water uptake by roots and the transpriation in shoots and induce hydraulic responses of roots, which is helpful to explain how hydrostatic gradient regulates root hydraulic traits. To explore the regulation mechanisms of root hydraulics to the broken whole plant water balance by root excision and water stress, we investigated the changes of individual root (Lproot) and cortex cell (Lpcell) hydraulic conductivities of wheat (Triticum aestivum, cv. Changwu 134) after root excision and water stress with root and cell pressure probes. The transcription levels of TaPIP1;2 and TaPIP2;5 were also measured with Quantitative Real-time PCR. Root excision or water stress treatment significantly reduced the leaf transpiration rate and stomatal conductance of wheat seedlings, but the Lproot or Lpcell of the remained roots had no significant changes. The transpiration rate, stomatal conductance, leaf water potential, Lproot, and Lpcell of root-excised plants were significantly higher than those of plants under water stress. However, these parameters of plants with both root excision and water stress were significantly lower than those with a single treatment or the control. Irrespectively of root excision or water stress, Lpcell had a significantly positive correlation with Lproot (R2 = 0.97, P < 0.05), which suggested the accordance in root water uptake ability at cell level and individual root level. Root excision significantly up-regulated the relative mRNA contents of TaPIP1;2 and TaPIP2;5 in wheat roots, but water stress had an effect of down-regulation. The relative mRNA contents of TaPIP1;2 and TaPIP2;5 of root excised and water stressed seedlings were the lowest in the four treatments. These results may suggest that root excision could reduce the tolerance of wheat seedling to the following water stress; cortex cell hydraulic conductivity could be accordant with individual root hydraulic conductivity during wheat root hydraulics regulation; and TaPIP1;2 and TaPIP2;5 may be involved in regulating root hydraulics of wheat.

Key words: Wheat, Root excision, Water stress, Individual root hydraulic conductivity, Cell hydraulic conductivity, TaPIPs

[1]Turner N C. Adaptation to water deficits: a changing perspective. Funct Plant Biol, 1986, 13: 175–190



[2]Davies W J, Wilkinson S, Loveys B. Stomatal control by chemical signaling and the exploitation of this mechanism to increase water use efficiency in agriculture. New Phytol, 2002, 153: 449–460



[3]Fereres E, Soriano M A. Deficit irrigation for reducing agricultural water use. J Exp Bot, 2007, 58: 147–159



[4]Deng X P, Shan L, Zhang H, Turner N C. Improving agricultural water use efficiency in arid and semiarid areas of China. Agric Water Manag, 2006, 80: 23–40



[5]Maurel C, Simonneau T, Sutka M. The significance of roots as hydraulic rheostats. J Exp Bot, 2010, 61: 3191–3198



[6]Steudle E. Water uptake by roots: effects of water deficit. J Exp Bot, 2000, 51: 1531–1542



[7]Dubcovsky J, Dvorak J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science, 2007, 316: 1862–1866



[8]National Bureau of Statistics of China. China Statistical Yearbook 2011. Beijing: China Statistics Press, 2011



[9]Hurd E A. Phenotype and drought tolerance in wheat. Agric Meteorol, 1974, 14: 39–55



[10]Zhang R(张荣), Zhang D-Y(张大勇). A comparative study on root redundancy in spring wheat varieties released in different years in semi-aird area. J Plant Ecol (植物生态学报), 2000, 24(3): 298–303 (in Chinese with English abstract)



[11]Zhang S-Q(张岁岐), Shan L(山仑), Deng X-P(邓西平). Change of water use efficiency and its relation with root system growth in wheat evolution. Chin Sci Bull (科学通报), 2002, 47(17): 1327–1331 (in Chinese)



[12]Ma S-C(马守臣), Li F-M(李凤民), Xu B-C(徐炳成), Huang Z-B(黄占斌). Effects of root pruning at regreening stage on drought tolerance and water use efficiency of winter wheat on the late growth stage. J Plant Ecol (植物生态学报), 2008, 32(5): 1194–1200 (in Chinese with English abstract)



[13]Ma S-C(马守臣), Xu B-C(徐炳成), Li F-M(李凤民), Huang Z-B(黄占斌). Effect of root pruning on root efficiency, water use and yield of winter wheat. Chin J Appl Environ Biol (应用与环境生物学报), 2009, 15(5): 606–609 (in Chinese with English abstract)



[14]Vysotskaya L B, Arkhipova T N, Timergalina L N, Dedov A V, Veselov S Y, Kudoyarova G R. Effect of partial root excision on transpiration, root hydraulic conductance and leaf growth in wheat seedlings. Plant Physiol Biochem, 2004, 42: 251–255



[15]Vysotskaya L B, Kudoyarova G R, Veselov S, Jones H G. Unusual stomatal behaviour on partial root excision in wheat seedlings. Plant Cell Environ, 2003, 27: 69–77



[16]Preston G M, Carroll T P, Guggino W B, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science, 1992, 256: 385–387



[17]Tyerman S, Bohnert H, Maurel C, Steudle E, Smith J. Plant acuaporins: their molecular biology, biophysics and significance for plant water relations. J Exp Bot, 1999, 50: 1055–1071



[18]Johanson U, Karlsson M, Johansson I, Gustavsson S, Sjovall S, Fraysse L, Weig A R, Kjellbom P. The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol, 2001, 126: 1358–1369



[19]Park W, Scheffler B E, Bauer P J, Campbell B T. Identification of the family of aquaporin genes and their expression in upland cotton (Gossypium hirsutum L.). BMC Plant Biol, 2010, 10: 142–158



[20]Weig A, Deswarte C, Chrispeels M J. The major intrinsic protein family of Arabidopsis has 23 members that form three distinct groups with functional aquaporins in each group. Plant Physiol, 1997, 114: 1347–1357



[21]Siefritz F, Tyree M T, Lovisolo C, Schubert A, Kaldenhoff R. PIP1 plasma membrane aquaporins in tobacco: from cellular effects to function in plants. Plant Cell, 2002, 14: 869–876



[22]Martre P, Morillon R, Barrieu F, North G B, Nobel P S, Chrispeels M J. Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiol, 2002, 130: 2101–2110



[23]Henzler T, Waterhouse R N, Smyth A J, Carvajal M, Cooke D T, Schäffner A R, Steudle E, Clarkson D T. Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta, 1999, 210: 50–60



[24]Lopez F, Bousser A, Sissoeff I, Gaspar M, Lachaise B, Hoarau J, Mahe A. Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins. Plant Cell Physiol, 2003, 44: 1384–1395



[25]Chaumont F, Barrieu F, Jung R, Chrispeels M J. Plasma membrane intrinsic proteins from maize cluster in two sequence subgroups with differential aquaporin activity. Plant Physiol, 2000, 122: 1025–1034



[26]Moshelion M, Becker D, Biela A, Uehlein N, Hedrich R, Otto B, Levi H, Moran N, Kaldenhoff R. Plasma membrane aquaporins in the motor cells of Samanea saman: diurnal and circadian regulation. Plant Cell, 2002, 14: 727–739



[27]Fetter K, Van Wilder V, Moshelion M, Chaumont F. Interactions between plasma membrane aquaporins modulate their water channel activity. Plant Cell, 2004, 16: 215–228



[28]Hachez C, Moshelion M, Zelazny E, Cavez D, Chaumont F. Localization and quantification of plasma membrane aquaporin expression in maize primary root: a clue to understanding their role as cellular plumbers. Plant Mol Biol, 2006, 62: 305–323



[29]Lian H L, Yu X, Lane D, Sun W N, Tang Z C, Su W A. Upland rice and lowland rice exhibited different PIP expression under water deficit and ABA treatment. Cell Res, 2006, 16: 651–660



[30]Lee S H, Chung G C, Jang J Y, Ahn S J, Zwiazek J J. Overexpression of PIP2;5 aquaporin alleviates effects of low root temperature on cell hydraulic conductivity and growth in Arabidopsis. Plant Physiol, 2012, 159: 479–488



[31]Hachez C, Veselov D, Ye Q, Reinhardt H, Knipfer T, Fricke W, Chaumont F. Short-term control of maize cell and root water permeability through plasma membrane aquaporin isoforms. Plant Cell Environ, 2012, 35: 185–198



[32]Zhang W H, Tyerman S D. Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol, 1999, 120: 849–857



[33]Forrest K L, Bhave M. The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features. Funct Integr Genomic, 2008, 8: 115–133



[34]Wan X-C(万贤崇), Ye Q(叶清). Pressure probe techniques in studies of plant physiology. Chin Bull Bot (植物学通报), 2008, 25(5): 497–506 (in Chinese with English abstract)



[35]Wan X-C(万贤崇), Zhang S-Q(张岁岐), Zhang W-H(张文浩). Application of pressure probe techniques in studies of plant water relations. J Plant Physiol Mol Biol (植物生理与分子生物学学报), 2007, 33(6): 471–479 (in Chinese with English abstract)



[36]Steudle E. Pressure probe techniques: basic principles and application to studies of water and solute relations at the cell, tissue and organ level. In: Smith J A C, Griffiths H, eds. Water Deficits: Plant Responses from Cell to Community. Oxford: Bios Scientific Publishers Ltd., 1993. pp 5–36



[37]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCt method. Methods, 2001, 25: 402–408



[38]Wallace J S, Biscoe P V. Water relations of winter wheat: 4. Hydraulic resistance and capacitance in the soil-plant system. J Agric Sci, 1983, 100: 591–600



[39]Zhang D-Y(张大勇), Jiang X-H(姜新华), Zhao S-L(赵松岭), Duan S-S(段舜山). An ecological analysis of growth redundancy in root systems of crops under drought conditions. Acta Bot Boreali-Occident Sin (西北植物学报), 1995, 15(5): 110–114 (in Chinese with English abstract)



[40]Zhang D-Y(张大勇), Jiang X-H(姜新华), Zhao S-L(赵松岭). Further thoughts on growth redundancy. Acta Pratacul Sin (草业学报), 1995, 4(3): 17–22 (in Chinese with English abstract)



[41]Zhang R(张荣), Sun G-J(孙国钧), Li F-M(李凤民). Definition of redundancy and the ecological mechanism of its occurrence. Acta Bot Boreali-Occident Sin (西北植物学报), 2003, 23(5): 844–851 (in Chinese with English abstract)



[42]Maurel C, Verdoucq L, Luu D T, Santoni V. Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol, 2008, 59: 595–624
[1] 胡文静, 李东升, 裔新, 张春梅, 张勇. 小麦穗部性状和株高的QTL定位及育种标记开发和验证[J]. 作物学报, 2022, 48(6): 1346-1356.
[2] 郭星宇, 刘朋召, 王瑞, 王小利, 李军. 旱地冬小麦产量、氮肥利用率及土壤氮素平衡对降水年型与施氮量的响应[J]. 作物学报, 2022, 48(5): 1262-1272.
[3] 付美玉, 熊宏春, 周春云, 郭会君, 谢永盾, 赵林姝, 古佳玉, 赵世荣, 丁玉萍, 徐延浩, 刘录祥. 小麦矮秆突变体je0098的遗传分析与其矮秆基因定位[J]. 作物学报, 2022, 48(3): 580-589.
[4] 冯健超, 许倍铭, 江薛丽, 胡海洲, 马英, 王晨阳, 王永华, 马冬云. 小麦籽粒不同层次酚类物质与抗氧化活性差异及氮肥调控效应[J]. 作物学报, 2022, 48(3): 704-715.
[5] 刘运景, 郑飞娜, 张秀, 初金鹏, 于海涛, 代兴龙, 贺明荣. 宽幅播种对强筋小麦籽粒产量、品质和氮素吸收利用的影响[J]. 作物学报, 2022, 48(3): 716-725.
[6] 马红勃, 刘东涛, 冯国华, 王静, 朱雪成, 张会云, 刘静, 刘立伟, 易媛. 黄淮麦区Fhb1基因的育种应用[J]. 作物学报, 2022, 48(3): 747-758.
[7] 王洋洋, 贺利, 任德超, 段剑钊, 胡新, 刘万代, 郭天财, 王永华, 冯伟. 基于主成分-聚类分析的不同水分冬小麦晚霜冻害评价[J]. 作物学报, 2022, 48(2): 448-462.
[8] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[9] 徐龙龙, 殷文, 胡发龙, 范虹, 樊志龙, 赵财, 于爱忠, 柴强. 水氮减量对地膜玉米免耕轮作小麦主要光合生理参数的影响[J]. 作物学报, 2022, 48(2): 437-447.
[10] 马博闻, 李庆, 蔡剑, 周琴, 黄梅, 戴廷波, 王笑, 姜东. 花前渍水锻炼调控花后小麦耐渍性的生理机制研究[J]. 作物学报, 2022, 48(1): 151-164.
[11] 孟颖, 邢蕾蕾, 曹晓红, 郭光艳, 柴建芳, 秘彩莉. 小麦Ta4CL1基因的克隆及其在促进转基因拟南芥生长和木质素沉积中的功能[J]. 作物学报, 2022, 48(1): 63-75.
[12] 韦一昊, 于美琴, 张晓娇, 王露露, 张志勇, 马新明, 李会强, 王小纯. 小麦谷氨酰胺合成酶基因可变剪接分析[J]. 作物学报, 2022, 48(1): 40-47.
[13] 李玲红, 张哲, 陈永明, 尤明山, 倪中福, 邢界文. 普通小麦颖壳蜡质缺失突变体glossy1的转录组分析[J]. 作物学报, 2022, 48(1): 48-62.
[14] 罗江陶, 郑建敏, 蒲宗君, 范超兰, 刘登才, 郝明. 四倍体小麦与六倍体小麦杂种的染色体遗传特性[J]. 作物学报, 2021, 47(8): 1427-1436.
[15] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!