欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (02): 339-346.doi: 10.3724/SP.J.1006.2015.00339

• 耕作栽培·生理生化 • 上一篇    

应用454测序技术分析种植制度对黑垆土微生物多样性的影响

蔡艳1,2,郝明德1,3,*,张丽琼1,臧逸飞1,何晓雁1   

  1. 1 西北农林科技大学资源环境学院,陕西杨凌712100;2 四川农业大学资源环境学院,四川成都611130;3 西北农林科技大学水土保持研究所,陕西杨凌712100
  • 收稿日期:2014-03-18 修回日期:2014-12-19 出版日期:2015-02-12 网络出版日期:2014-12-29
  • 通讯作者: 郝明德, E-mail: mdhao@ms.iswc.ac.cn, Tel: 029-87012322
  • 基金资助:

    本研究由国家科技支撑计划重大项目(2011BAD31B01)和宁夏农业综合开发科技推广项目(NTKJ-2013-03-1)资助。

Effect of Cropping Systems on Microbial Diversity in Black Loessial Soil Tested by 454 Sequencing Technology

CAI Yan1,2,HAO Ming-De1,3,*,ZHANG Li-Qiong1,ZANG Yi-Fei1,HE Xiao-Yan1   

  1. 1 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; 2 College of Resources and Environment, Sichuan Agricultural University, Chengdu 611130, China; 3 Institute of Soil and Water Conservation, Northwest A&F University , Yangling 712100, China
  • Received:2014-03-18 Revised:2014-12-19 Published:2015-02-12 Published online:2014-12-29
  • Contact: 郝明德, E-mail: mdhao@ms.iswc.ac.cn, Tel: 029-87012322

摘要:

研究典型种植制度对旱地黑垆土微生物多样性的影响,对优化旱地作物种植制度、发挥土壤潜在肥力、实现土壤资源可持续利用有着重要的意义。通过27年长期定位试验,采用454测序技术分析了黄土高原旱作地区不同种植制度下黑垆土细菌、真菌多样性的变化情况。结果表明,不施肥低营养胁迫下,细菌多样性表现为粮豆轮作>小麦连作>裸地>苜蓿连作,真菌多样性表现为小麦连作≈苜蓿连作>裸地>粮豆轮作。施氮、磷肥条件下,粮草长周期轮作(苜蓿→ 苜蓿→ 苜蓿→ 苜蓿→ 马铃薯→ 小麦→ 小麦→ 小麦+苜蓿)中土壤微生物多样性大致表现出先降低后增加的趋势,第4年苜蓿或苜蓿茬后第1年小麦微生物Chao指数和Shannon指数最低,苜蓿茬后第2年小麦微生物多样性最高,细菌Chao指数和真菌Shannon指数比连作小麦高22.0%和79.2%;粮草短周期轮作(红豆草→小麦→小麦+红豆草)中土壤微生物多样性大致呈现增加趋势,至红豆草茬后第2年小麦土壤微生物多样性达到最高,真菌Chao指数和Shannon指数均分别比连作小麦高50.8%和51.0%。黄土高原旱地区黑垆土采取粮食作物与豆科作物轮作可提高土壤微生物多样性。

关键词: 454测序, 高通量测序, 旱地土壤, 微生物多样性, 种植制度

Abstract:

ment lasted 27 years, we analyzed the diversity changes of bacteria and fungi in black loessial soil under different cropping systems in Loess Plateau using 454 sequencing technology. The results showed that bacterial diversity showed wheat-pea rotation> continuous wheat>fallow land>continuous alfalfa, and fungal diversity showed continuous wheat≈continuous alfalfa>fallow land>wheat-pea rotation under low nutritional stress with no fertilization. In the conditions of application of nitrogen fertilizer and phosphorus fertilizer, microbial diversity generally showed an decreasing and then increasing trend in long-period rotation of wheat–alfalfa (alfalfa→ alfalfa→ alfalfa→ alfalfa→ potato→ wheat→ wheat→ wheat, eight years as a rotation period); Chao index and Shannon index of the 4th year alfalfa or the 1st year wheat were the lowest, and those of the 2nd year wheat were the maximum, with the bacteria Chao index and fungi Shannon index of 22.0% and 79.2% higher than those of continuous wheat, respectively. Microbial diversity generally showed an increasing trend in short-period rotation of wheat–sainfoin (sainfoin→wheat→ wheat, three years as a rotation period), and that of the 2nd year wheat after sainfoin was the maximum, with fungi Chao index and Shannon index of 50.8% and 51.0% higher than that of continuous wheat respectively. Wheat-forage legumes rotation could improve the microbial diversity significantly in Loess dryland areas.

Key words: The 454 sequencing, High-throughput sequencing, Dry land soil, Microbial diversity, Cropping system

[1]叶协锋, 张友杰, 鲁喜梅, 魏跃伟, 李琰琰, 刘国顺. 土壤微生物与土壤营养关系研究进展. 土壤通报, 2009, 40: 237–241

Ye X F, Zhang Y J, Lu X M, Wei Y W, Li Y Y, Liu G S. Research advance on relationship between the soil microbes and soil nutrition. Chin J Soil Sci, 2009, 40: 237–241 (in Chinese with English abstract)

[2]林先贵, 胡君利. 土壤微生物多样性的科学内涵及其生态服务功能. 土壤学报, 2008, 45: 892–900

Lin X G, Hu J L. Scientific connotation and ecological service function of soil microbial diversity. Acta Pedol Sin, 2008, 45: 892–900 (in Chinese with English abstract)

[3]Torsvik V L, Goksoyr J, Daae F L. High diversity in DNA of soil bacteria. Appl Environ Microbiol, 1990, 56: 782–787

[4]Singh K M, Jakhesara S J, Koringa P G, Rank D N, Joshi C G. Metagenomic analysis of virulence-associated and antibiotic resistance genes of microbes in rumen of Indian buffalo (Bubalus bubalis). Gene, 2012, 507: 146–151

[5]Star B, Nederbragt A J, Jentoft S, Grimholt U, Malmstr?m M, Gregers T F, Rounge T B, Paulsen J, Solbakken M H, Sharma A, Wetten O F, Lanzén A, Winer R, Knight J, Vogel J H, Aken B, Andersen O, Lagesen K, Tooming-Klunderud A, Edvardsen R B, Tina K G, Espelund M, Nepal C, Previti C, Karlsen B O, Moum T, Skage M, Berg P R, Gj?en T, Kuhl H, Thorsen J, Malde K, Reinhardt R, Du L, Johansen S D, Searle S, Lien S, Nilsen F, Jonassen I, Omholt S W, Stenseth N C, Jakobsen K S. The genome sequence of Atlantic cod reveals a unique immune system. Nature, 2011, 477: 207–210

[6]The Potato Genemo Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature, 2011, 475: 189–195

[7]Yu L, Nicolaisen M, Larsen J, Ravnskov S. Organic fertilization alters the community composition of root associated fungi in Pisum sativum. Soil Biol Biochem, 2013, 58: 36–41

[8]Navarro-Noya Y E, Gómez-Acata S, Montoya-Ciriaco N, Rojas-Valdez A, Suarez-Arriaga M C, Valenzuela-Encinas C, Jimenez-Bueno N, Verhulst N, Govaerts B, Dendooven L. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semiarid agroecosystem. Soil Biol Biochem, 2013, 65: 86–95

[9]Sul W J, Asuming-Brempong S, Wang Q, Tourlousse D M, Penton R C, Deng Y, Rodrigues J L M, Adiku S G K, Jones J W, Zhou J, Cole J R, Tiedje J M. Tropical agricultural land management influences on soil microbial communities through its effect on soil organic carbon. Soil Biol Biochem, 2013, 65: 33–38

[10]Poulsen P H B, Al-Soud W A, Bergmark L, Magid J, Hansen L H. Effects of fertilization with urban and agricultural organic wastes in a field trial—prokaryotic diversity investigated by pyrosequencing. Soil Biol Biochem, 2013, 57: 784–793

[11]张相麟, 喻建波. 陕西土种志. 西安: 陕西科学技术出版社, 1993. pp 20–45

Zhang X L, Yu J B. Soil Species in Shaanxi. Xi’an: Shaanxi Science and Technology Press, 1993. pp 20–45(in Chinese)

[12]危锋, 郝明德. 长期施用氮、磷和有机肥对不同种植体系土壤有效硫累积的影响. 植物营养与肥料学报, 2009, 15: 613–617

Wei F, Hao M D. Soil available sulfur accumulation in a long-term N, P and organic fertilizer experiment under the different cropping systems. Plant Nutr Fert Sci, 2009, 15: 613–617(in Chinese with English abstract)

[13]陈磊, 郝明德, 张少民, 高长青. 黄土高原旱地施肥对小麦与苜蓿土壤水分养分含量的影响. 草地学报, 2007, 15: 371–375

Chen L, Hao M D, Zhang S M, Gao C Q. Effect of long-term fertilization on the soil water and nutrient contents of rainfed wheat and alfalfa lands in Loess Plateau. Acta Agrestia Sin, 2007, 15: 371–375 (in Chinese with English abstract)

[14] 樊虎玲, 郝明德, 李志西. 黄土高原旱地小麦-苜蓿轮作对小麦品质和子粒氨基酸含量的影响. 植物营养与肥料学报, 2007, 13: 262–266

Fan H L, Hao M D, Li Z X. Effect of alfalfa-wheat rotation system on the quality and amino acid content of wheat in dryland of Loess Plateau. Plant Nutr Fert Sci, 2007, 13: 262–266 (in Chinese with English abstract)

[15]蔡艳, 郝明德. 长期轮作对黄土高原旱地小麦籽粒 蛋白质营养品质的影响. 应用生态学报, 2013, 24: 1354–1360

Cai Y, Hao M D. Effects of long-term rotation on the nutritional quality of wheat grain protein on dryland of Loess Plateau, Northwest China. Chin J Appl Ecol, 2013, 24: 1354–1360(in Chinese with English abstract)

[16]李巍, 郝明德, 王学春. 黄土高原沟壑区不同种植系统土壤水分消耗和恢复. 农业工程学报, 2010, 26(3): 99–105

Li W, Hao M D, Wang X C. Depletion and restoration of soil water in different cultivating systems in Gully Region of Loess Plateau. Trans CSAE, 2010, 26(3): 99–105(in Chinese with English abstract)

[17]高会议, 郭胜利, 刘文兆, 车升国. 黄土旱塬区冬小麦不同施肥处理的土壤呼吸及土壤碳动态. 生态学报, 2009, 29: 2551–2558

Gao H Y, Guo S L, Liu W Z, Che S G. Soil respiration and carbon fractions in winter wheat cropping system under fertilization practices in arid-highland of the Loess Plateau. Acta Ecol Sin, 2009, 29: 2551–2558 (in Chinese with English abstract)

[18]Lane D J. 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, eds. Nucleic Acid Techniques in Bacterial Systematics. New York: Wiley J and Sons Ltd, 1991. pp 115–175

[19]White T J, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M A, Gelfan D H, Sninsky J J, White T J, eds. A Guide to Methods and Applications. San Diego: Academic Press, 1990. pp 315–322

[20]Gardes M, Bruns T D. ITS primers with enhanced specificity for Basidiomycetes—Application to the identification of mycorrhizae and rusts. Mol Ecol, 1993, 2: 113–118

[21]Schloss P D, Westcott S L, Ryabin T, Hall J R, Hartmann M, Hollister E B, Lesniewski R A, Oakley B B, Parks D H, Robinson C J, Sahl J W, Stres B, Thallinger G G, Horn D J V, Weber C F. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol, 2009, 75: 37–41

[22]Pruesse E, Quast C, Knittel K, Fuchs B M, Ludwig W, Peplies J, Gl?ckner F O. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucl Acids Res, 2007, 35: 7188–7196

[23]Russo S E, Legge R, Weber K A, Brodie E L, Goldfarb K C, Benson A K, Tan S. Bacterial community structure of contrasting soils underlying Bornean rain forests: Inferences from microarray and next-generation sequencing methods. Soil Biol Biochem, 2012, 55: 48–59

[24]Campbell B J, Polson S W, Hanson T E, Mack M C, Schuur E A. The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol, 2010, 12: 1842–1854

[25]Acosta-Martínez V, Dowd S, Sun Y, Allen V. Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem, 2008, 40: 2762–2770

[26]吴凤芝, 王学征. 黄瓜与小麦和大豆轮作对土壤微生物群落物种多样性的影响. 园艺学报, 2007, 34: 1543–1546

Wu F Z, Wang X Z. Effect of soybean-cucumber and wheat-cucumber rotation on soil microbial community species diversity. Acta Hortic Sin, 2007, 34: 1543–1546 (in Chinese with English abstract)

[27]刘晓宏, 郝明德, 樊军. 黄土高原旱区长期不同轮作施肥对土壤供氮能力的影响. 干旱地区农业研究, 2000, 18(3): 1–7

Liu X H, Hao M D, Fan J. Effects of long-term rotation and fertilization on N-supply by soil in dryland area on loess plateau. Agric Res Arid Areas, 2000, 18(3): 1–7 (in Chinese with English abstract)

[28]李兆丽. 红豆草与紫花苜蓿的培肥效果研究. 草业科学, 2008, 25(7): 65–68

Li Z L. Study of Onobrychis viciaefolia and Medicago sativa on yield and soil fertility. Pratacult Sci, 2008, 25(7): 65–68 (in Chinese with English abstract)

[29]陈文新. 土壤和环境微生物学. 北京: 北京农业大学出版社, 1990. pp 66–67

Chen W X. Soil and Environmental Microbiology. Beijing: Beijing Agricultural University Press, 1990. pp 66–67 (in Chinese)

[30]樊军, 郝明德. 长期轮作与施肥对土壤主要微生物类群的影响. 水土保持研究, 2003, 10(1): 88–89

Fan J, Hao M D. Effects of long-term rotations and fertilization on soil microflora. Res Soil Water Conserv, 2003, 10(1): 88–89 (in Chinese with English abstract)

[1] 肖健, 陈思宇, 孙妍, 杨尚东, 谭宏伟. 不同施肥水平下甘蔗植株根系内生细菌群落结构特征[J]. 作物学报, 2022, 48(5): 1222-1234.
[2] 岳丹丹, 韩贝, Abid Ullah, 张献龙, 杨细燕. 干旱条件下棉花根际真菌多样性分析[J]. 作物学报, 2021, 47(9): 1806-1815.
[3] 张玮, 洪艳云, 刘登望, 张博文, 易图永, 李林. 施钙对酸性红壤花生根系内生细菌群落结构的影响[J]. 作物学报, 2021, 47(1): 116-124.
[4] 彭强,李佳丽,张大双,姜雪,邓茹月,吴健强,朱速松. 不同环境基于高密度遗传图谱的稻米外观品质QTL定位[J]. 作物学报, 2018, 44(8): 1248-1255.
[5] 吴林坤,黄伟民,王娟英,吴红淼,陈军,秦贤金,张重义,林文雄. 不同连作年限野生地黄根际土壤微生物群落多样性分析[J]. 作物学报, 2015, 41(02): 308-317.
[6] 吕远大,李坦,石丽,张晓林,赵涵. 基于全基因组重测序信息开发玉米H99自交系特异分子标记[J]. 作物学报, 2014, 40(02): 191-197.
[7] 孙爱清,张杰道,万勇善,刘风珍,张昆,孙利. 花生干旱胁迫响应基因的数字表达谱分析[J]. 作物学报, 2013, 39(06): 1045-1053.
[8] 宁堂原;焦念元;张民;郑延海;赵春;安艳艳;李增嘉. 不同品种组合下春夏玉米套作的氮素利用特征研究[J]. 作物学报, 2007, 33(11): 1896-1901.
[9] 王龙昌;王立祥;贾志宽;冯金侠. 旱作农区应变型种植制度决策系统的建立及效益[J]. 作物学报, 2003, 29(04): 557-561.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!