欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (10): 1510-1518.doi: 10.3724/SP.J.1006.2015.01510

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

基于高密度遗传图谱的玉米籽粒性状QTL定位

秦伟伟,李永祥,李春辉,陈林,吴迅,白娜,石云素,宋燕春,张登峰,王天宇*,黎裕*   

  1. 中国农业科学院作物科学研究所,北京100081
  • 收稿日期:2015-03-09 修回日期:2015-06-01 出版日期:2015-10-12 网络出版日期:2015-07-01
  • 通讯作者: 王天宇,E-mail: wangtianyu@caas.cn;黎裕,E-mail: liyu03@caas.cn
  • 基金资助:

    本研究由国家重点基础研究发展计划(973计划)项目(2011CB100105, 2014CB138200),国家自然科学基金项目(91335206)和中国农业科学院科技创新工程项目资助。

QTL Mapping for Kernel Related Traits Based on a High-Density Genetic Map

QIN Wei-Wei,LI Yong-Xiang,LI Chun-Hui,CHEN Lin,WU Xun,BAI Na,SHI Yun-Su,SONG Yan-Chun,ZHANG Deng-Feng,WANG Tian-Yu*,LI Yu*   

  1. Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2015-03-09 Revised:2015-06-01 Published:2015-10-12 Published online:2015-07-01
  • Contact: 王天宇,E-mail: wangtianyu@caas.cn;黎裕,E-mail: liyu03@caas.cn

摘要:

籽粒大小及百粒重是决定玉米产量的重要因素。为解析籽粒性状遗传基础,本研究以玉米自交系黄早四(HZS)Mo17为亲本,构建包含130个重组自交系(recombination inbred line, RIL)RIL群体。基于GBS (genotyping-by-sequencing)技术获得的高密度多态性SNP (single nucleotide polymorphism)位点,构建了包含1262Bin标记的高密度遗传图谱。采用完备区间作图法,对5个环境条件下的粒长、粒宽、百粒重、粒长/粒宽4个性状分别进行QTL (quantitative trait locus)定位,共检测到30QTL。利用5个环境性状均值,共检测到11QTL。其中粒长主效QTLqklen1、粒长/粒宽主效QTLqklw13个单环境条件下均被检测到,且定位在第1染色体相邻区域,物理位置分别为210~212 Mb207~208 Mb,表型贡献率分别为22.60%26.79%,被认为是控制玉米籽粒形状的主效位点。针对第1染色体207~212 Mb区间,采用成组法t检验,对黄早四(受体)Mo17 (供体)构建的BC3F1回交群体进行单标记分析。结果表明,在BC3F1群体中qklen1qklw1同样具有显著的遗传效应。本研究不仅为分子标记辅助选择籽粒性状提供了实用标记,而且为主效基因的进一步精细定位和候选基因挖掘奠定了基础。

关键词: 玉米(Zea mays L.), 籽粒性状, 数量性状位点(QTL), 高密度遗传图谱

Abstract:

Kernel size and weight are major determinants of grain yield. For understanding molecular mechanisms of kernel related traits, a recombinant inbred line (RIL) mapping population including 130 families was developed from the cross of two maize elite inbreds, Huangzaosi (HZS) and Mo17. By using the approach of GBS (genotyping-by-sequencing), the high-density genetic map with 1262 bin markers was constructed. QTLs for kernel related traits were identified by stepwise regression (RSTEP-LRT) using Windows QTL ICI-Mapping software in five environments. In total, 30 QTLs were detected in single environment and 11 QTLs were detected in joint environment. The kernel length major QTL qklen1 and the length/width major QTL qklw1 were found in the adjoining regions with a strong genetic effect in three environments. QTL qklen1 was located in a region of 210–212 Mb on chromosome 1 with explained 22.60% of phenotypic variance, and qklw1 was located in a region of 207–208 Mb on chromosome 1 with explained 26.79% of phenotypic variance. In addition, for further verification, another introgression population of BC3F1 was developed with Mo17 as the donor parent and HZS as the recurrent parent. The result of the single marker analysis suggested that qklen1 and qklw1 also had a significantly genetic effect, which is similar to that in the RIL population. The present study provides a good basis for studying genetic mechanism and molecular marker assisted selection for the improvement of kernel related traits in maize.

Key words: Maize, Kernel related trait, QTL, High-density genetic map

[1]Ray D K, Mueller N D, West P C, Foley J A. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8(6): e66428



[2]Sundaresan V. Control of seed size in plants. Proc Natl Acad Sci USA, 2005, 12: 17887–17888



[3]Yang X, Ma H, Zhang P, Yan J, Guo Y, Song T, Li J. Characterization of QTL for oil content in maize kernel. Theor Appl Genet, 2012, 125: 1169-1179



[4]Ribaut J M, Jiang C, Gonzalez D, Edmeades G O, Hoisington D A. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker assisted selection strategies. Theor Appl Genet, 1997, 94: 887–896



[5]Wen Y X, Zhu J. Multivariable conditional analysis for complex trait and its components. Acta Genet Sin, 2005, 32: 289–296



[6]Borras L, Otegui M E. Maize kernel weight response to post flowering source-sink ratio. Crop Sci, 2001, 41: 1816–1822



[7]Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell, 2006, 127: 1309–1321



[8]李永祥, 王阳, 石云素, 宋燕春, 王天宇, 黎裕. 玉米籽粒构型与产量性状的关系及QTL作图. 中国农业科学, 2009, 42: 408–418



Li Y X, Wang Y, Shi Y S, Song Y C, Wang T Y, Li Y. Correlation analysis and QTL mapping for traits of kernel structure and yield components in maize. Sci Agric Sin, 2009, 42: 408–418(in Chinese with English abstract)



[9]Peng B, Li Y X, Wang Y, Liu C, Liu Z Z, Tan W W, Zhang Y, Wang D, Shi Y S, Sun B C, Song Y C, Wang T Y, Li Y. QTL analysis for yield components and kernel related traits in maize across multi-environments. Theor Appl Genet, 2011, 122: 1305–1320



[10]黎裕, 王天宇, 石云素, 宋燕春. 基因组学方法在玉米种质资源研究中的应用. 植物遗传资源学报, 2003, 4: 256–260



Li Y, Wang T Y, Shi Y S, Song Y C. Applications of genomics approaches in studies on maize germplasm. J Plant Genet Resour, 2003, 4: 256–260 (in Chinese with English abstract)



[11]Liu Y, Wang L W, Sun C L, Zhang Z X, Zheng Y L, Qiu F Z. Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet, 2014, 127: 1019–1037



[12]Zhang Z H, Liu Z H, Hu Y M, Li W H, Fu Z Y, Ding D, Li H C, Qiao M M, Tang J H. QTL analysis of kernel-related traits in maize using an immortalized F2 population. PLoS One, 2014, 9(2): e89645



[13]Nikolic A, Andelkovic V, Dodig D, Drinic M S, Kravic N, Micic I D. Identification of QTLs for drought tolerance in maize: II. Yield and yield components. Genetica, 2013, 45: 341–350



[14]Colasuonno P, Gadaleta A, Giancaspro A, Nigro D, Giove S, Incerti O, Mangini G, Signorile A, Simeone R, Blanco A. Development of a high-density SNP-based linkage map and detection of yellow pigment content QTLs in durum wheat. Mol Breed, 2014, 34: 1563–1578



[15]Guo T T, Yang N, Tong H, Pan Q C, Yang X H, Tang J H, Wang J K, Li J S, Yan J B. Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor Appl Genet, 2014, 127: 2149–2158



[16]Zou G H, Zhai G W, Feng Q, Yan S, Wang A H, Zhao Q, Shao J F, Zhang Z P, Zou J Q, Han B, Tao Y Z. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot, 2012, 63: 5451–5462



[17]Chen D H, Ronald P. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep, 1999, 17: 53–57



[18]Elshire R J, Glaubitz J C, Sun Q, Poland J A, Kawamoto K, Buckler E S, Mitchell S E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 2011, 6(5): e19379



[19]Li C H, Li Y X, Shi Y S, Song Y C, Zhang D F, Buckler E S, Zhang Z W, Wang T Y, Li Y. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS One, 2015, 10(3): e0121624



[20]Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, Weng J F, Wang H L, Lei C L, Wang J L, Zhang X. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet, 2006, 112: 1258–1270



[21]Wang J K, Wan X Y, Crossa J, Crouch J, Weng J, Zhai H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006, 88: 93–104



[22]Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374



[23]Gupta P K, Rustgi S, Kumar N. Genetic and molecular basis of grain size and its relevance to grain productivity in higher plants. Genome, 2006, 49: 565–571



[24]Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol A B, Saranga Y. Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population. Plant Cell Environ, 2009, 32: 758–779



[25]Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maccaferri M, Conti S. Mapping QTL regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot, 2002, 89: 941-963



[26]Li C H, Li Y X, Sun B C, Peng B, Liu C, Liu Z Z, Yang Z Z, Li Q C, Tan W W, Zhang Y, Wang D, Shi Y S, Song Y C, Wang T Y, Li Y. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica, 2013, 193: 303–316



[27]Austin D F, Lee M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet, 1996, 92: 817–826



[28]张向歌, 王彬, 袁亮, 张晓祥, 时夏, 赵晓锋, 汤继华. 基于单片段代换系玉米子粒性状的QTL定位. 玉米科学, 2013, 21(6): 35–40



Zhang X G, Wang B, Yuan L, Zhang X X, Shi X, Zhao X F, Tang J H. QTL mapping for kernel related traits basing on the single segment substitution lines in maize. J Maize Sci, 2013, 21(6): 35–40 (in Chinese with English abstract)



[29]张伟强, 库丽霞, 张君, 韩赞平, 陈彦惠. 玉米出籽率、籽粒深度和百粒重的QTL分析. 作物学报, 2013, 39: 455–463



Zhang W Q, Ku L X, Zhang J, Han Z P, Chen Y H. QTL analysis of kernel ratio, kernel depth, and 100-kernel weight in maize (Zea mays L.). Acta Agron Sin, 2013, 39: 455–463(in Chinese with English abstract)

 


 
[1] 彭强,李佳丽,张大双,姜雪,邓茹月,吴健强,朱速松. 不同环境基于高密度遗传图谱的稻米外观品质QTL定位[J]. 作物学报, 2018, 44(8): 1248-1255.
[2] 耿庆河,王兰芬,武晶,王述民. 普通菜豆籽粒大小与形状的QTL定位[J]. 作物学报, 2017, 43(08): 1149-1160.
[3] 王辉,梁前进,胡小娇,李坤,黄长玲,王琪,何文昭,王红武*,刘志芳*. 不同密度下玉米穗部性状的QTL分析[J]. 作物学报, 2016, 42(11): 1592-1600.
[4] 寇程,高欣,李立群,李扬,王中华,李学军*. 小麦粒重基因TaGW2-6A等位变异的组成分析及育种选择[J]. 作物学报, 2015, 41(11): 1640-1647.
[5] 郑德波,杨小红,李建生,严建兵,张士龙,贺正华,黄益勤. 基于SNP标记的玉米株高及穗位高QTL定位[J]. 作物学报, 2013, 39(03): 549-556.
[6] 王雨,孙永建,陈灯银,余四斌. 水稻染色体片段代换系对氮、磷胁迫反应差异及其QTL分析[J]. 作物学报, 2009, 35(4): 580-587.
[7] 谭静;姚文华;徐春霞;罗黎明;番兴明. 优质蛋白玉米籽粒性状的遗传效应[J]. 作物学报, 2008, 34(05): 904-908.
[8] 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61-66.
[9] 张志明;赵茂俊;荣廷昭;潘光堂. 玉米SSR连锁图谱构建与株高及穗位高QTL定位[J]. 作物学报, 2007, 33(02): 341-344.
[10] 张凤路;江亚丽;赵国顺;张俊花. 14C同化物在玉米果穗上的分布与籽粒败育关系[J]. 作物学报, 2006, 32(07): 1104-1106.
[11] 穆蕊;张祖新;张方东;郑用琏. 玉米CMS-S小孢子败育过程中的细胞程序性死亡[J]. 作物学报, 2006, 32(05): 666-670.
[12] 易斌;陈伟;马朝芝;傅廷栋;涂金星. 甘蓝型油菜产量及相关性状的QTL分析[J]. 作物学报, 2006, 32(05): 676-682.
[13] 高群英;D.V.Glover. 玉米籽粒发育过程中胚乳核DNA含量的变化同籽粒性状的关系[J]. 作物学报, 1994, 20(01): 46-51.
[14] 于振文; D.B.Egli. 物理性限制籽粒容积对冬小麦籽粒生长的影响[J]. 作物学报, 1990, 16(02): 161-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!