作物学报 ›› 2015, Vol. 41 ›› Issue (10): 1510-1518.doi: 10.3724/SP.J.1006.2015.01510
秦伟伟,李永祥,李春辉,陈林,吴迅,白娜,石云素,宋燕春,张登峰,王天宇*,黎裕*
QIN Wei-Wei,LI Yong-Xiang,LI Chun-Hui,CHEN Lin,WU Xun,BAI Na,SHI Yun-Su,SONG Yan-Chun,ZHANG Deng-Feng,WANG Tian-Yu*,LI Yu*
摘要:
籽粒大小及百粒重是决定玉米产量的重要因素。为解析籽粒性状遗传基础,本研究以玉米自交系黄早四(HZS)和Mo17为亲本,构建包含130个重组自交系(recombination inbred line, RIL)的RIL群体。基于GBS (genotyping-by-sequencing)技术获得的高密度多态性SNP (single nucleotide polymorphism)位点,构建了包含1262个Bin标记的高密度遗传图谱。采用完备区间作图法,对5个环境条件下的粒长、粒宽、百粒重、粒长/粒宽4个性状分别进行QTL (quantitative trait locus)定位,共检测到30个QTL。利用5个环境性状均值,共检测到11个QTL。其中粒长主效QTLqklen1、粒长/粒宽主效QTLqklw1在3个单环境条件下均被检测到,且定位在第1染色体相邻区域,物理位置分别为210~212 Mb、207~208 Mb,表型贡献率分别为22.60%和26.79%,被认为是控制玉米籽粒形状的主效位点。针对第1染色体207~212 Mb区间,采用成组法t检验,对黄早四(受体)和Mo17 (供体)构建的BC
[1]Ray D K, Mueller N D, West P C, Foley J A. Yield trends are insufficient to double global crop production by 2050. PLoS One, 2013, 8(6): e66428[2]Sundaresan V. Control of seed size in plants. Proc Natl Acad Sci USA, 2005, 12: 17887–17888[3]Yang X, Ma H, Zhang P, Yan J, Guo Y, Song T, Li J. Characterization of QTL for oil content in maize kernel. Theor Appl Genet, 2012, 125: 1169-1179[4]Ribaut J M, Jiang C, Gonzalez D, Edmeades G O, Hoisington D A. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker assisted selection strategies. Theor Appl Genet, 1997, 94: 887–896[5]Wen Y X, Zhu J. Multivariable conditional analysis for complex trait and its components. Acta Genet Sin, 2005, 32: 289–296[6]Borras L, Otegui M E. Maize kernel weight response to post flowering source-sink ratio. Crop Sci, 2001, 41: 1816–1822[7]Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell, 2006, 127: 1309–1321[8]李永祥, 王阳, 石云素, 宋燕春, 王天宇, 黎裕. 玉米籽粒构型与产量性状的关系及QTL作图. 中国农业科学, 2009, 42: 408–418 Li Y X, Wang Y, Shi Y S, Song Y C, Wang T Y, Li Y. Correlation analysis and QTL mapping for traits of kernel structure and yield components in maize. Sci Agric Sin, 2009, 42: 408–418(in Chinese with English abstract)[9]Peng B, Li Y X, Wang Y, Liu C, Liu Z Z, Tan W W, Zhang Y, Wang D, Shi Y S, Sun B C, Song Y C, Wang T Y, Li Y. QTL analysis for yield components and kernel related traits in maize across multi-environments. Theor Appl Genet, 2011, 122: 1305–1320[10]黎裕, 王天宇, 石云素, 宋燕春. 基因组学方法在玉米种质资源研究中的应用. 植物遗传资源学报, 2003, 4: 256–260 Li Y, Wang T Y, Shi Y S, Song Y C. Applications of genomics approaches in studies on maize germplasm. J Plant Genet Resour, 2003, 4: 256–260 (in Chinese with English abstract)[11]Liu Y, Wang L W, Sun C L, Zhang Z X, Zheng Y L, Qiu F Z. Genetic analysis and major QTL detection for maize kernel size and weight in multi-environments. Theor Appl Genet, 2014, 127: 1019–1037[12]Zhang Z H, Liu Z H, Hu Y M, Li W H, Fu Z Y, Ding D, Li H C, Qiao M M, Tang J H. QTL analysis of kernel-related traits in maize using an immortalized F2 population. PLoS One, 2014, 9(2): e89645[13]Nikolic A, Andelkovic V, Dodig D, Drinic M S, Kravic N, Micic I D. Identification of QTLs for drought tolerance in maize: II. Yield and yield components. Genetica, 2013, 45: 341–350[14]Colasuonno P, Gadaleta A, Giancaspro A, Nigro D, Giove S, Incerti O, Mangini G, Signorile A, Simeone R, Blanco A. Development of a high-density SNP-based linkage map and detection of yellow pigment content QTLs in durum wheat. Mol Breed, 2014, 34: 1563–1578[15]Guo T T, Yang N, Tong H, Pan Q C, Yang X H, Tang J H, Wang J K, Li J S, Yan J B. Genetic basis of grain yield heterosis in an “immortalized F2” maize population. Theor Appl Genet, 2014, 127: 2149–2158[16]Zou G H, Zhai G W, Feng Q, Yan S, Wang A H, Zhao Q, Shao J F, Zhang Z P, Zou J Q, Han B, Tao Y Z. Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. J Exp Bot, 2012, 63: 5451–5462[17]Chen D H, Ronald P. A rapid DNA minipreparation method suitable for AFLP and other PCR applications. Plant Mol Biol Rep, 1999, 17: 53–57[18]Elshire R J, Glaubitz J C, Sun Q, Poland J A, Kawamoto K, Buckler E S, Mitchell S E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 2011, 6(5): e19379[19]Li C H, Li Y X, Shi Y S, Song Y C, Zhang D F, Buckler E S, Zhang Z W, Wang T Y, Li Y. Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS One, 2015, 10(3): e0121624[20]Wan X Y, Wan J M, Jiang L, Wang J K, Zhai H Q, Weng J F, Wang H L, Lei C L, Wang J L, Zhang X. QTL analysis for rice grain length and fine mapping of an identified QTL with stable and major effects. Theor Appl Genet, 2006, 112: 1258–1270[21]Wang J K, Wan X Y, Crossa J, Crouch J, Weng J, Zhai H Q, Wan J M. QTL mapping of grain length in rice (Oryza sativa L.) using chromosome segment substitution lines. Genet Res, 2006, 88: 93–104[22]Li H H, Ye G Y, Wang J K. A modified algorithm for the improvement of composite interval mapping. Genetics, 2007, 175: 361–374[23]Gupta P K, Rustgi S, Kumar N. Genetic and molecular basis of grain size and its relevance to grain productivity in higher plants. Genome, 2006, 49: 565–571[24]Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol A B, Saranga Y. Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbreed line population. Plant Cell Environ, 2009, 32: 758–779[25]Tuberosa R, Salvi S, Sanguineti M C, Landi P, Maccaferri M, Conti S. Mapping QTL regulating morpho-physiological traits and yield: case studies, shortcomings and perspectives in drought-stressed maize. Ann Bot, 2002, 89: 941-963[26]Li C H, Li Y X, Sun B C, Peng B, Liu C, Liu Z Z, Yang Z Z, Li Q C, Tan W W, Zhang Y, Wang D, Shi Y S, Song Y C, Wang T Y, Li Y. Quantitative trait loci mapping for yield components and kernel-related traits in multiple connected RIL populations in maize. Euphytica, 2013, 193: 303–316[27]Austin D F, Lee M. Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet, 1996, 92: 817–826[28]张向歌, 王彬, 袁亮, 张晓祥, 时夏, 赵晓锋, 汤继华. 基于单片段代换系玉米子粒性状的QTL定位. 玉米科学, 2013, 21(6): 35–40Zhang X G, Wang B, Yuan L, Zhang X X, Shi X, Zhao X F, Tang J H. QTL mapping for kernel related traits basing on the single segment substitution lines in maize. J Maize Sci, 2013, 21(6): 35–40 (in Chinese with English abstract)[29]张伟强, 库丽霞, 张君, 韩赞平, 陈彦惠. 玉米出籽率、籽粒深度和百粒重的QTL分析. 作物学报, 2013, 39: 455–463Zhang W Q, Ku L X, Zhang J, Han Z P, Chen Y H. QTL analysis of kernel ratio, kernel depth, and 100-kernel weight in maize (Zea mays L.). Acta Agron Sin, 2013, 39: 455–463(in Chinese with English abstract)
|
[1] | 彭强,李佳丽,张大双,姜雪,邓茹月,吴健强,朱速松. 不同环境基于高密度遗传图谱的稻米外观品质QTL定位[J]. 作物学报, 2018, 44(8): 1248-1255. |
[2] | 耿庆河,王兰芬,武晶,王述民. 普通菜豆籽粒大小与形状的QTL定位[J]. 作物学报, 2017, 43(08): 1149-1160. |
[3] | 王辉,梁前进,胡小娇,李坤,黄长玲,王琪,何文昭,王红武*,刘志芳*. 不同密度下玉米穗部性状的QTL分析[J]. 作物学报, 2016, 42(11): 1592-1600. |
[4] | 寇程,高欣,李立群,李扬,王中华,李学军*. 小麦粒重基因TaGW2-6A等位变异的组成分析及育种选择[J]. 作物学报, 2015, 41(11): 1640-1647. |
[5] | 郑德波,杨小红,李建生,严建兵,张士龙,贺正华,黄益勤. 基于SNP标记的玉米株高及穗位高QTL定位[J]. 作物学报, 2013, 39(03): 549-556. |
[6] | 王雨,孙永建,陈灯银,余四斌. 水稻染色体片段代换系对氮、磷胁迫反应差异及其QTL分析[J]. 作物学报, 2009, 35(4): 580-587. |
[7] | 谭静;姚文华;徐春霞;罗黎明;番兴明. 优质蛋白玉米籽粒性状的遗传效应[J]. 作物学报, 2008, 34(05): 904-908. |
[8] | 阿加拉铁;曾龙军;薛大伟;胡江;曾大力;高振宇;郭龙彪;李仕贵;钱前. 水稻灌浆期不同阶段叶绿素含量的QTL分析[J]. 作物学报, 2008, 34(01): 61-66. |
[9] | 张志明;赵茂俊;荣廷昭;潘光堂. 玉米SSR连锁图谱构建与株高及穗位高QTL定位[J]. 作物学报, 2007, 33(02): 341-344. |
[10] | 张凤路;江亚丽;赵国顺;张俊花. 14C同化物在玉米果穗上的分布与籽粒败育关系[J]. 作物学报, 2006, 32(07): 1104-1106. |
[11] | 穆蕊;张祖新;张方东;郑用琏. 玉米CMS-S小孢子败育过程中的细胞程序性死亡[J]. 作物学报, 2006, 32(05): 666-670. |
[12] | 易斌;陈伟;马朝芝;傅廷栋;涂金星. 甘蓝型油菜产量及相关性状的QTL分析[J]. 作物学报, 2006, 32(05): 676-682. |
[13] | 高群英;D.V.Glover. 玉米籽粒发育过程中胚乳核DNA含量的变化同籽粒性状的关系[J]. 作物学报, 1994, 20(01): 46-51. |
[14] | 于振文; D.B.Egli. 物理性限制籽粒容积对冬小麦籽粒生长的影响[J]. 作物学报, 1990, 16(02): 161-167. |
|