欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (10): 1519-1528.doi: 10.3724/SP.J.1006.2015.01519

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

水稻斑点叶突变体spl21的鉴定与基因定位

宋莉欣1,2,黄奇娜1,奉保华1,施勇烽1,张晓波1,徐霞1,王惠梅1,李小红1,赵宝华2,* ,吴建利1,*   

  1. 中国水稻研究所/水稻生物学国家重点实验室 / 国家水稻改良中心,浙江杭州310006;2河北师范大学生命科学学院,河北石家庄 050024
  • 收稿日期:2015-03-12 修回日期:2015-06-01 出版日期:2015-10-12 网络出版日期:2015-06-03
  • 通讯作者: 赵宝华, E-mail: zhaobaohua86178@sohu.com; 吴建利, E-mail: beishangd@163.com
  • 基金资助:

    本研究由国家高技术研究发展计划(863计划)项目(2014AAl0A603和2012AA101102)资助。

Characterization and Gene Mapping of a Spotted-leaf Mutant spl21 in Rice (Oryza sativa L.)

SONG Li-Xin1,2,HUANG Qi-Na1,FENG Bao-Hua1,SHI Yong-Feng1,ZHANG Xiao-Bo1,XU Xia1,WANG Hui-Mei1,LI Xiao-Hong1,ZHAO Bao-Hua2,*,WU Jian-Li1,*   

  1. 1 State Key Laboratory of Rice Biology / Chinese National Center for Rice Improvement / China National Rice Research Institute, Hangzhou 310006, China; 2 College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
  • Received:2015-03-12 Revised:2015-06-01 Published:2015-10-12 Published online:2015-06-03
  • Contact: 赵宝华, E-mail: zhaobaohua86178@sohu.com; 吴建利, E-mail: beishangd@163.com

摘要:

通过双环氧丁烷(Diepoxybutane)诱变籼稻品种IR64获得一个稳定遗传的红褐色斑点叶突变体spl21 (spotted-leaf 21)。大田条件下,突变体播种后约2周叶片上开始出现红褐色斑点,随后部分斑点融合,从叶尖开始发黄枯萎,并沿叶片两侧边缘向下扩散,严重时叶片大部分或整体枯死。突变体spl21与野生型IR64相比,其株高、穗长、有效穗数、实粒数、结实率和千粒重等农艺性状均显著降低。组织化学分析表明,叶片斑点处及周围有H2O2沉积。突变还导致叶绿素a、叶绿素b和类胡萝卜素含量极显著降低,叶片光合能力明显下降;此外,突变体中CATSODAPX和可溶性蛋白含量均极显著降低,POD活性则极显著升高。遗传分析表明,突变体表型受1对隐性核基因控制。通过图位克隆法最终将该基因定位于第12染色体长臂下端介于InDel-8RM28746之间约87 kb的区段内,暂名spl21(t),本研究为该基因的克隆与功能研究奠定了基础

关键词: 水稻, 斑点叶突变体, 过氧化氢, 光合色素, 基因定位

Abstract:

The rice spotted-leaf 21 mutant (spl21) was isolated from a diepoxybutane-induced IR64 mutant bank. Under field conditions, the red-brown spots appeared on the leaves of mutant seedlings in two weeks after sowing. Subsequently, a portion of spots merged and the leaf tips became yellowish, wilted and spread downwards along both edges of the leaf blade leading to the death of the whole leaf blade when the symptom was severe. Accumulation of H2O2 was detected in and around the spots. Major agronomic traits including plant height, length of panicle, number of panicles, number of filled grains, seed setting-rate and 1000-grain weight were markedly affected in the mutant. The contents of chlorophyll a, b, carotenoid and photosynthetic parameters were significantly reduced in the mutant as compared with the wild type. Furthermore, the activities of CAT, SOD, APX and soluble protein contents were significantly lower than those of the wild type while the activity of POD was apparently higher than that of the wild type. The mutant trait was controlled by a single recessive nuclear gene, tentatively termed spl21(t), located on the long arm of chromosome 12. The population and data achieved in the present study would facilitate the isolation and functional analysis of spl21(t).

Key words: Rice, Spotted-leaf mutant, Hydrogen peroxide, Photosynthetic pigment, Gene mapping

[1]黄奇娜, 杨杨, 施勇烽, 陈洁, 吴建利. 水稻斑点叶变异研究进展. 中国水稻科学, 2010, 24: 108–115



Huang Q N, Yang Y, Shi Y F, Chen J, Wu J L. Recent advances in research on spotted leaf mutants of rice (Oryza sativa). Chin J Rice Sci, 2010, 24: 108–115 (in Chinese with English abstract)



[2]Huang Q N, Shi Y F, Yang Y, Feng B H, Wei Y L, Chen J, Marietta B, Leung H, Wu J L. Characterization and genetic analysis of a light and temperature-sensitive spotted-leaf mutant in rice. J Integr Plant Biol, 2011, 53: 671–681



[3]Feng B H, Yang Y, Shi Y F, Shen H C, Wang H M, Huang Q N, Xu X, Lv X G, Wu J L. Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. J Integr Plant Biol, 2013, 55: 473–483



[4]Dietrich R A, Richberg M H, Schmidt R, Dean C, Dangl J L. A novel zinc finger protein is encoded by the arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997, 88: 685–694



[5]Gray J, Close P S, Briggs S P, Johal G S. A novel suppressor of cell death in plants encoded by the LIS1 gene of maize. Cell, 1997, 89: 25–31



[6]Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Daelen R, Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze L P. The barley mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695–705



[7]Badigannavar A M, Kale D M, Eapen S, Murty G S. Inheritance of disease lesion mimic leaf trait in groundnut. J Hered, 2002, 93: 50–52



[8]陈析丰, 金杨, 马伯军. 水稻类病变突变体及抗病性的研究进展. 植物病理学报, 2011, 41: 1–9



Chen X F, Jin Y, Ma B J. Progress on the studies of rice lesion mimics and their resistant mechanism to the pathogens. Acta Phytopathol Sin, 2011, 41: 1–9 (in Chinese with English abstract)



[9]邱结华, 马宁, 蒋汉伟, 圣忠华, 邵高能, 唐绍清, 魏祥进, 胡培松. 水稻类病斑突变体lmm4的鉴定及其基因定位. 中国水稻科学, 2014, 28: 367–376



Qiu J H, Ma N, Jiang H W, Sheng Z H, Shao G N, Tang S Q, Wei X J, Hu P S. Identification and gene mapping of a lesion mimic mutant lmm4 in rice. Chin J Rice Sci, 2014, 28: 367–376 (in Chinese with English abstract)



[10]Li Z, Zhang Y X, Liu L, Liu Q, Bi Z B, Yu N, Cheng S H, Cao L Y. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa). Plant Physiol Biochem, 2014, 80: 300–307



[11]Xu X, Zhang L L, Liu B M, Ye F Y, Wu Y J. Characterization and mapping of a spotted leaf mutant in rice (Oryza sativa). Genet Mol Biol, 2014, 37: 406–413



[12]刘林, 张迎信, 李枝, 刘群恩, 余宁, 孙滨,杨正福, 周全, 程式华, 曹立勇. 水稻类病变突变体g303的鉴定和基因定位. 中国水稻科学, 2014, 28: 465–472



Liu L, Zhang Y X, Liu Q N, Yu N, Sun B, Yang Z F, Zhou Q, Cheng S H, Cao L Y. Characterization and gene mapping of a lesion mimic mutant g303 in rice. Chin J Rice Sci, 2014, 28: 465–472 (in Chinese with English abstract)



[13]韩雪颖, 杨勇, 余初浪, 张文浩, 叶胜海, 陈斌, 程晨, 程晔, 严成其, 陈剑平. 一个抗病性增强的水稻类病变突变体的蛋白质组学研究. 中国水稻科学, 2014, 28: 559–569



Han X Y, Yang Y, Yu C L, Zhang W H, Ye S H, Chen B, Cheng C, Cheng H, Yan C Q, Chen J P. A proteomic study on a disease-resistance-enhanced rice lesion mimic mutant. Chin J Rice Sci, 2014, 28: 559–569 (in Chinese with English abstract)



[14]Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530–7535



[15]Zeng L R, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm B H, Leung H, Wang G L. Spotted leaf 11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16: 2795–2808



[16]Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. Isolation and molecular characterization of a spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847–860



[17]Qiao Y, Jiang W, Lee J, Park B, Choi M S, Piao R, Woo M O, Roh J H, Han L, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit l1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258–274



[18]Wang L Y, Pei Z Y, Tian Y C, He C Z. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact, 2005, 18: 375–384



[19] Kim J A, Cho K, Singh R, Jung Y H, Jeong S H, Kim S H, Lee J E, Cho Y S, Agrawal G K, Rakwal R, Tamogami S, Kersten B, Jeon J S, An G, Jwa N S. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells, 2009: 431–439



[20]Yuan Y X, Zhong S H, Li Q, Zhu Z R, Lou Y L, Wang L Y, Wang J J, Wang M Y, Li Q L, Yang D L, He Z H. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NHI is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J, 2007, 5: 313–324



[21]Takahashi A, Agrawal G K, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H. Rice pti1a negatively regulates RAR1-dependent defense responses. Plant Cell, 2007, 19: 2940–2951



[22]Sun C H, Liu L C, Tang J Y,  Lin A, Zhang F T, Fang J, Zhang G F, Chu C C. Rlin1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2011, 38: 29–37



[23]Tang J Y, Zhu X D , Wang Y Q, Liu L C, Xu B, Li F, Fang J, Chu C C. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice. Plant J, 2011, 66: 996–1007



[24]Liu X Q, Li F, Tang J Y, Wang W H, Zhang F X, Wang G D, Chu J F, Yan C Y, Wang T Q, Chu C C, Li C Y. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. Plos One, 2012, 7: 1–14



[25]Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Jin Y, Gu Z M, Qian Q, Zhai W X, Ma B J. SPL5, a cell death and defense-related gene, encodes a putativesplicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939–949



[26]Undan J R, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R. Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L). Genes Genet Syst, 2012, 87: 169–179



[27]Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake G J, Chu C. Nitric oxide and protein s-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol, 2012, 158: 451–464



[28]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133



[29]Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 285: 11308–11313



[30]Jiao B B, Wang J J, Zhu X D, Zeng L J, Li Q, He Z H. A novel protein RLS1 with NB-ARM domainsis involved in chloroplast degradation during leaf senescence in rice. Mol Plant, 2012, 5: 205–217



[31]Fekih R, Tamiru M, Kanzaki H, Abe A, Yoshida K, Kanzaki E, Saitoh H, Takagi H, Natsume S, Undan J R, Undan J, Terauchi R. The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genomics, 2014 Nov 4, 10, 1007/s00438-014–0944-z



[32]Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell, 2003, 15: 365–379



[33]Hu G, Yalpani N, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095–1105



[34]Brodersen P, Malinovsky F G, Hematy K, Newman M A, Mundy J. The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiol, 2005, 138: 1037–1045



[35]Wu C J, Bordeos A, Madamba M S, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 276: 605–619



[36]Arnon D I. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1–15



[37]Wellburn A R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol, 1994, 144: 307–313



[38]Thordal-Christansen H, Zhang Z G, Wei Y D, Collinge D B. Subcellular localization of H2O2 in plants H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J, 1997, 11: 1187–1194



[39]赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002. pp 134–143



Zhao S J, Shi G A, Dong X C. Plant Physiology Experiment Instruction. Beijing: China Agricultural Science and Technology Press, 2002. pp 134–143 (in Chinese)



[40]卢扬江, 郑康乐. 提取水稻DNA的一种简易方法. 中国水稻科学, 1992, 6(1): 47–48



Lu Y J, Zheng K L. A simple method for isolation of rice mitochondrial DNA. Chin J Rice Sci, 1992, 6(1): 47–48 (in Chinese with English abstract)



[41]李梦钗, 冯薇, 葛艳蕊. 臭氧处理对草莓果实PPO和POD活性的影响. 经济林研究, 2012, 30(3): 84–86



Li M C, Feng W, Ge Y R. Effects of ozone treatment on PPO and POD activities in strawberry fruit. Nonwood For Res, 2012, 30(3): 84–86 (in Chinese with English abstract)



[42]李秀兰, 王平荣, 曲志才, 孙小秋, 王兵, 邓晓建. 水稻类病变突变体C23的遗传分析与基因的精细定位. 中国农业科学, 2010, 43(18): 3691–3697



Li X L, Wang P R, Qu Z C, Sun X Q, Wang B, Deng X J. Genetic analysis and fine mapping of a lesion mimic mutant C23 in rice. Sci Agric Sin, 2010, 43(18): 3691–3697 (in Chinese with English abstract)



[43]杨绍华, 刘华清, 王锋. 水稻斑点叶突变体W1764的遗传分析及初步定位. 福建农业学报, 2011, 26: 519–522



Yang S H, Liu H Q, Wang F. Genetic analysis and gene mapping of a spotted leaf mutant W1764 in rice. Fujian J Agric Sci, 2011, 26: 519–522 (in Chinese with English abstract)



[44]吴超, 付亚萍, 胡国成, 斯华敏, 刘旭日, 孙宗修, 程式华, 刘文真. 一个水稻类病变黄叶突变体的鉴定和精细定位. 中国水稻科学, 2011, 25: 256–260



Wu C, Fu Y P, Hu G C, Si H M, Liu X R, Sun Z X, Cheng S H, Liu W Z. Identification and fine mapping of a spotted and yellow leaf mutant in rice. Chin J Rice Sci, 2011, 25: 256–260 (in Chinese with English abstract)



[45]陈萍萍, 叶胜海, 赵宁春, 陆艳婷, 刘合芹, 杨玲, 金庆生, 张小明. 浙粳22类病斑突变体spl(t)特征及其基因定位. 核农学报, 2010, 24: 1–6



Chen P P, Ye S H, Zhao N C,  Lu Y T , Liu H Q, Yang L, Jin Q S, Zhang X M. Characteristics and genetic mapping of a lesion mimic mutant spl(t) in Japonica rice variety Zhejing 22. J Nucl Agric Sci, 2010, 24: 1–6 (in Chinese with English abstract)



[46]代高猛, 朱小燕, 李云峰, 凌英华, 赵芳明, 杨正林, 何光华. 水稻类病斑突变体spl31的遗传分析与基因定位. 作物学报, 2013, 39: 1223–1230



Dai G M, Zhu X Y, Li Y F, Ling Y H, Zhao F M, Yang Z L, He G H. Genetic analysis and fine mapping of a lesion mimic mutant spl31 in rice. Acta Agron Sin, 2013, 39: 1223–1230 (in Chinese with English abstract)



[47]龙继凤, 潘英华, 秦学毅, 罗兴录, 朱汝财. 水稻类病变坏死突变体的形态观察及基因初步分析. 广西农业科学, 2009, 40: 614–617



Long J F, Pan Y H, Qin X Y, Luo X L, Zhu R C. Morphological observation and gene analysis of lesion mimic mutant of rice (Oryza sativa L.). Guangxi Agric Sci, 2009, 40: 614–617 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895.
[13] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[14] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[15] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!