作物学报 ›› 2015, Vol. 41 ›› Issue (10): 1519-1528.doi: 10.3724/SP.J.1006.2015.01519
宋莉欣1,2,黄奇娜1,奉保华1,施勇烽1,张晓波1,徐霞1,王惠梅1,李小红1,赵宝华2,* ,吴建利1,*
SONG Li-Xin1,2,HUANG Qi-Na1,FENG Bao-Hua1,SHI Yong-Feng1,ZHANG Xiao-Bo1,XU Xia1,WANG Hui-Mei1,LI Xiao-Hong1,ZHAO Bao-Hua2,*,WU Jian-Li1,*
摘要:
通过双环氧丁烷(Diepoxybutane)诱变籼稻品种IR64获得一个稳定遗传的红褐色斑点叶突变体spl21 (spotted-leaf 21)。大田条件下,突变体播种后约2周叶片上开始出现红褐色斑点,随后部分斑点融合,从叶尖开始发黄枯萎,并沿叶片两侧边缘向下扩散,严重时叶片大部分或整体枯死。突变体spl21与野生型IR64相比,其株高、穗长、有效穗数、实粒数、结实率和千粒重等农艺性状均显著降低。组织化学分析表明,叶片斑点处及周围有H2O2沉积。突变还导致叶绿素a、叶绿素b和类胡萝卜素含量极显著降低,叶片光合能力明显下降;此外,突变体中CAT、SOD、APX和可溶性蛋白含量均极显著降低,POD活性则极显著升高。遗传分析表明,突变体表型受1对隐性核基因控制。通过图位克隆法最终将该基因定位于第12染色体长臂下端介于InDel-8和RM28746之间约87 kb的区段内,暂名spl21(t),本研究为该基因的克隆与功能研究奠定了基础。
[1]黄奇娜, 杨杨, 施勇烽, 陈洁, 吴建利. 水稻斑点叶变异研究进展. 中国水稻科学, 2010, 24: 108–115Huang Q N, Yang Y, Shi Y F, Chen J, Wu J L. Recent advances in research on spotted leaf mutants of rice (Oryza sativa). Chin J Rice Sci, 2010, 24: 108–115 (in Chinese with English abstract)[2]Huang Q N, Shi Y F, Yang Y, Feng B H, Wei Y L, Chen J, Marietta B, Leung H, Wu J L. Characterization and genetic analysis of a light and temperature-sensitive spotted-leaf mutant in rice. J Integr Plant Biol, 2011, 53: 671–681[3]Feng B H, Yang Y, Shi Y F, Shen H C, Wang H M, Huang Q N, Xu X, Lv X G, Wu J L. Characterization and genetic analysis of a novel rice spotted-leaf mutant HM47 with broad-spectrum resistance to Xanthomonas oryzae pv. oryzae. J Integr Plant Biol, 2013, 55: 473–483[4]Dietrich R A, Richberg M H, Schmidt R, Dean C, Dangl J L. A novel zinc finger protein is encoded by the arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell, 1997, 88: 685–694[5]Gray J, Close P S, Briggs S P, Johal G S. A novel suppressor of cell death in plants encoded by the LIS1 gene of maize. Cell, 1997, 89: 25–31[6]Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Daelen R, Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F, Schulze L P. The barley mlo gene: a novel control element of plant pathogen resistance. Cell, 1997, 88: 695–705[7]Badigannavar A M, Kale D M, Eapen S, Murty G S. Inheritance of disease lesion mimic leaf trait in groundnut. J Hered, 2002, 93: 50–52[8]陈析丰, 金杨, 马伯军. 水稻类病变突变体及抗病性的研究进展. 植物病理学报, 2011, 41: 1–9Chen X F, Jin Y, Ma B J. Progress on the studies of rice lesion mimics and their resistant mechanism to the pathogens. Acta Phytopathol Sin, 2011, 41: 1–9 (in Chinese with English abstract)[9]邱结华, 马宁, 蒋汉伟, 圣忠华, 邵高能, 唐绍清, 魏祥进, 胡培松. 水稻类病斑突变体lmm4的鉴定及其基因定位. 中国水稻科学, 2014, 28: 367–376Qiu J H, Ma N, Jiang H W, Sheng Z H, Shao G N, Tang S Q, Wei X J, Hu P S. Identification and gene mapping of a lesion mimic mutant lmm4 in rice. Chin J Rice Sci, 2014, 28: 367–376 (in Chinese with English abstract)[10]Li Z, Zhang Y X, Liu L, Liu Q, Bi Z B, Yu N, Cheng S H, Cao L Y. Fine mapping of the lesion mimic and early senescence 1 (lmes1) in rice (Oryza sativa). Plant Physiol Biochem, 2014, 80: 300–307[11]Xu X, Zhang L L, Liu B M, Ye F Y, Wu Y J. Characterization and mapping of a spotted leaf mutant in rice (Oryza sativa). Genet Mol Biol, 2014, 37: 406–413[12]刘林, 张迎信, 李枝, 刘群恩, 余宁, 孙滨,杨正福, 周全, 程式华, 曹立勇. 水稻类病变突变体g303的鉴定和基因定位. 中国水稻科学, 2014, 28: 465–472Liu L, Zhang Y X, Liu Q N, Yu N, Sun B, Yang Z F, Zhou Q, Cheng S H, Cao L Y. Characterization and gene mapping of a lesion mimic mutant g303 in rice. Chin J Rice Sci, 2014, 28: 465–472 (in Chinese with English abstract)[13]韩雪颖, 杨勇, 余初浪, 张文浩, 叶胜海, 陈斌, 程晨, 程晔, 严成其, 陈剑平. 一个抗病性增强的水稻类病变突变体的蛋白质组学研究. 中国水稻科学, 2014, 28: 559–569Han X Y, Yang Y, Yu C L, Zhang W H, Ye S H, Chen B, Cheng C, Cheng H, Yan C Q, Chen J P. A proteomic study on a disease-resistance-enhanced rice lesion mimic mutant. Chin J Rice Sci, 2014, 28: 559–569 (in Chinese with English abstract)[14]Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc Natl Acad Sci USA, 2002, 99: 7530–7535[15]Zeng L R, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm B H, Leung H, Wang G L. Spotted leaf 11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell, 2004, 16: 2795–2808[16]Mori M, Tomita C, Sugimoto K, Hasegawa M, Hayashi N, Dubouzet J G, Ochiai H, Sekimoto H, Hirochika H, Kikuchi S. Isolation and molecular characterization of a spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol Biol, 2007, 63: 847–860[17]Qiao Y, Jiang W, Lee J, Park B, Choi M S, Piao R, Woo M O, Roh J H, Han L, Paek N C, Seo H S, Koh H J. SPL28 encodes a clathrin-associated adaptor protein complex 1, medium subunit l1 (AP1M1) and is responsible for spotted leaf and early senescence in rice (Oryza sativa). New Phytol, 2010, 185: 258–274[18]Wang L Y, Pei Z Y, Tian Y C, He C Z. OsLSD1, a rice zinc finger protein, regulates programmed cell death and callus differentiation. Mol Plant Microbe Interact, 2005, 18: 375–384 [19] Kim J A, Cho K, Singh R, Jung Y H, Jeong S H, Kim S H, Lee J E, Cho Y S, Agrawal G K, Rakwal R, Tamogami S, Kersten B, Jeon J S, An G, Jwa N S. Rice OsACDR1 (Oryza sativa accelerated cell death and resistance 1) is a potential positive regulator of fungal disease resistance. Mol Cells, 2009: 431–439[20]Yuan Y X, Zhong S H, Li Q, Zhu Z R, Lou Y L, Wang L Y, Wang J J, Wang M Y, Li Q L, Yang D L, He Z H. Functional analysis of rice NPR1-like genes reveals that OsNPR1/NHI is the rice orthologue conferring disease resistance with enhanced herbivore susceptibility. Plant Biotechnol J, 2007, 5: 313–324[21]Takahashi A, Agrawal G K, Yamazaki M, Onosato K, Miyao A, Kawasaki T, Shimamoto K, Hirochika H. Rice pti1a negatively regulates RAR1-dependent defense responses. Plant Cell, 2007, 19: 2940–2951 [22]Sun C H, Liu L C, Tang J Y, Lin A, Zhang F T, Fang J, Zhang G F, Chu C C. Rlin1, encoding a putative coproporphyrinogen III oxidase, is involved in lesion initiation in rice. J Genet Genomics, 2011, 38: 29–37[23]Tang J Y, Zhu X D , Wang Y Q, Liu L C, Xu B, Li F, Fang J, Chu C C. Semi-dominant mutations in the CC-NB-LRR-type R gene, NLS1, lead to constitutive activation of defense responses in rice. Plant J, 2011, 66: 996–1007[24]Liu X Q, Li F, Tang J Y, Wang W H, Zhang F X, Wang G D, Chu J F, Yan C Y, Wang T Q, Chu C C, Li C Y. Activation of the jasmonic acid pathway by depletion of the hydroperoxide lyase OsHPL3 reveals crosstalk between the HPL and AOS branches of the oxylipin pathway in rice. Plos One, 2012, 7: 1–14 [25]Chen X F, Hao L, Pan J W, Zheng X X, Jiang G H, Jin Y, Gu Z M, Qian Q, Zhai W X, Ma B J. SPL5, a cell death and defense-related gene, encodes a putativesplicing factor 3b subunit 3 (SF3b3) in rice. Mol Breed, 2012, 30: 939–949[26]Undan J R, Tamiru M, Abe A, Yoshida K, Kosugi S, Takagi H, Yoshida K, Kanzaki H, Saitoh H, Fekih R, Sharma S, Undan J, Yano M, Terauchi R. Mutation in OsLMS, a gene encoding a protein with two double-stranded RNA binding motifs, causes lesion mimic phenotype and early senescence in rice (Oryza sativa L). Genes Genet Syst, 2012, 87: 169–179[27]Lin A, Wang Y, Tang J, Xue P, Li C, Liu L, Hu B, Yang F, Loake G J, Chu C. Nitric oxide and protein s-nitrosylation are integral to hydrogen peroxide-induced leaf cell death in rice. Plant Physiol, 2012, 158: 451–464[28]Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions. Plant J, 2013, 74: 122–133 [29]Fujiwara T, Maisonneuve S, Isshiki M, Mizutani M, Chen L, Wong H L, Kawasaki T, Shimamoto K. Sekiguchi lesion gene encodes a cytochrome P450 monooxygenase that catalyzes conversion of tryptamine to serotonin in rice. J Biol Chem, 2010, 285: 11308–11313[30]Jiao B B, Wang J J, Zhu X D, Zeng L J, Li Q, He Z H. A novel protein RLS1 with NB-ARM domainsis involved in chloroplast degradation during leaf senescence in rice. Mol Plant, 2012, 5: 205–217[31]Fekih R, Tamiru M, Kanzaki H, Abe A, Yoshida K, Kanzaki E, Saitoh H, Takagi H, Natsume S, Undan J R, Undan J, Terauchi R. The rice (Oryza sativa L.) LESION MIMIC RESEMBLING, which encodes an AAA-type ATPase, is implicated in defense response. Mol Genet Genomics, 2014 Nov 4, 10, 1007/s00438-014–0944-z[32]Balague C, Lin B, Alcon C, Flottes G, Malmstrom S, Kohler C, Neuhaus G, Pelletier G, Gaymard F, Roby D. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell, 2003, 15: 365–379[33]Hu G, Yalpani N, Briggs S P, Johal G S. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell, 1998, 10: 1095–1105[34]Brodersen P, Malinovsky F G, Hematy K, Newman M A, Mundy J. The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiol, 2005, 138: 1037–1045[35]Wu C J, Bordeos A, Madamba M S, Baraoidan M, Ramos M, Wang G L, Leach J E, Leung H. Rice lesion mimic mutants with enhanced resistance to diseases. Mol Genet Genomics, 2008, 276: 605–619[36]Arnon D I. Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol, 1949, 24: 1–15[37]Wellburn A R. The spectral determination of chlorophyll a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Plant Physiol, 1994, 144: 307–313[38]Thordal-Christansen H, Zhang Z G, Wei Y D, Collinge D B. Subcellular localization of H2O2 in plants H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J, 1997, 11: 1187–1194[39]赵世杰, 史国安, 董新纯. 植物生理学实验指导. 北京: 中国农业科学技术出版社, 2002. pp 134–143Zhao S J, Shi G A, Dong X C. Plant Physiology Experiment Instruction. Beijing: China Agricultural Science and Technology Press, 2002. pp 134–143 (in Chinese) [40]卢扬江, 郑康乐. 提取水稻DNA的一种简易方法. 中国水稻科学, 1992, 6(1): 47–48Lu Y J, Zheng K L. A simple method for isolation of rice mitochondrial DNA. Chin J Rice Sci, 1992, 6(1): 47–48 (in Chinese with English abstract)[41]李梦钗, 冯薇, 葛艳蕊. 臭氧处理对草莓果实PPO和POD活性的影响. 经济林研究, 2012, 30(3): 84–86Li M C, Feng W, Ge Y R. Effects of ozone treatment on PPO and POD activities in strawberry fruit. Nonwood For Res, 2012, 30(3): 84–86 (in Chinese with English abstract)[42]李秀兰, 王平荣, 曲志才, 孙小秋, 王兵, 邓晓建. 水稻类病变突变体C23的遗传分析与基因的精细定位. 中国农业科学, 2010, 43(18): 3691–3697Li X L, Wang P R, Qu Z C, Sun X Q, Wang B, Deng X J. Genetic analysis and fine mapping of a lesion mimic mutant C23 in rice. Sci Agric Sin, 2010, 43(18): 3691–3697 (in Chinese with English abstract)[43]杨绍华, 刘华清, 王锋. 水稻斑点叶突变体W1764的遗传分析及初步定位. 福建农业学报, 2011, 26: 519–522Yang S H, Liu H Q, Wang F. Genetic analysis and gene mapping of a spotted leaf mutant W1764 in rice. Fujian J Agric Sci, 2011, 26: 519–522 (in Chinese with English abstract)[44]吴超, 付亚萍, 胡国成, 斯华敏, 刘旭日, 孙宗修, 程式华, 刘文真. 一个水稻类病变黄叶突变体的鉴定和精细定位. 中国水稻科学, 2011, 25: 256–260Wu C, Fu Y P, Hu G C, Si H M, Liu X R, Sun Z X, Cheng S H, Liu W Z. Identification and fine mapping of a spotted and yellow leaf mutant in rice. Chin J Rice Sci, 2011, 25: 256–260 (in Chinese with English abstract)[45]陈萍萍, 叶胜海, 赵宁春, 陆艳婷, 刘合芹, 杨玲, 金庆生, 张小明. 浙粳22类病斑突变体spl(t)特征及其基因定位. 核农学报, 2010, 24: 1–6Chen P P, Ye S H, Zhao N C, Lu Y T , Liu H Q, Yang L, Jin Q S, Zhang X M. Characteristics and genetic mapping of a lesion mimic mutant spl(t) in Japonica rice variety Zhejing 22. J Nucl Agric Sci, 2010, 24: 1–6 (in Chinese with English abstract)[46]代高猛, 朱小燕, 李云峰, 凌英华, 赵芳明, 杨正林, 何光华. 水稻类病斑突变体spl31的遗传分析与基因定位. 作物学报, 2013, 39: 1223–1230Dai G M, Zhu X Y, Li Y F, Ling Y H, Zhao F M, Yang Z L, He G H. Genetic analysis and fine mapping of a lesion mimic mutant spl31 in rice. Acta Agron Sin, 2013, 39: 1223–1230 (in Chinese with English abstract)[47]龙继凤, 潘英华, 秦学毅, 罗兴录, 朱汝财. 水稻类病变坏死突变体的形态观察及基因初步分析. 广西农业科学, 2009, 40: 614–617Long J F, Pan Y H, Qin X Y, Luo X L, Zhu R C. Morphological observation and gene analysis of lesion mimic mutant of rice (Oryza sativa L.). Guangxi Agric Sci, 2009, 40: 614–617 (in Chinese with English abstract) |
[1] | 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388. |
[2] | 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400. |
[3] | 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415. |
[4] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
[5] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
[6] | 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050. |
[7] | 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128. |
[8] | 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140. |
[9] | 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151. |
[10] | 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261. |
[11] | 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790. |
[12] | 刘磊, 詹为民, 丁武思, 刘通, 崔连花, 姜良良, 张艳培, 杨建平. 玉米矮化突变体gad39的遗传分析与分子鉴定[J]. 作物学报, 2022, 48(4): 886-895. |
[13] | 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961. |
[14] | 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655. |
[15] | 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666. |
|