欢迎访问作物学报,今天是

作物学报 ›› 2015, Vol. 41 ›› Issue (11): 1632-1639.doi: 10.3724/SP.J.1006.2015.01632

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

玉米BEL1-like基因家族的鉴定、表达和调控分析

曹征1,**,李曼菲1,**,孙伟1,张丹1,张祖新1,2,*   

  1. 1 华中农业大学作物遗传改良国家重点实验室, 湖北武汉430070; 2 黄冈师范学院生物科学技术学院, 湖北黄冈438000
  • 收稿日期:2015-03-20 修回日期:2015-07-20 出版日期:2015-11-12 网络出版日期:2015-08-05
  • 基金资助:

    本研究由国家自然科学基金项目(91335110)资助。

Genome-wide Identification, Expression, and Regulation Analysis of BEL1-like Family Genes in Maize

CAO Zheng1,**,LI Man-Fei1,**,SUN Wei1,ZHANG Dan1,ZHANG Zu-Xin1,2,*   

  1. 1 National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; 2 College of Life Science, Huanggang Normal University, Huanggang 438000, China
  • Received:2015-03-20 Revised:2015-07-20 Published:2015-11-12 Published online:2015-08-05

摘要:

BEL1-like (BELL)家族蛋白是植物中普遍存在的一类具有同源异型结构域的转录因子。拟南芥中BELL家族蛋白能KNOTTED1-like蛋白互作形成异源二聚体并结合到特异顺式作用元件来调控基因的表达,从而影响植物生长发育进程。本文采用隐马可夫(HMM)模型,在玉米基因组中鉴定到15BELL家族基因(ZmBELL),分布于7条玉米染色体。通过与拟南芥BELL基因的序列比较将这些基因分为两大类。在玉米8种组织中ZmBELL有不同的表达模式,具有明显的组织表达特异性。基于基因共表达分析及BELL-like蛋白特异结合的顺式元件分析,预测到86个可能受ZmBELL调控的下游靶标基因。这86个基因和12ZmBELL表达模式相同,并且在基因启动子区存在与BEL1-like蛋白结合的顺式元件。这些结果为进一步解析玉米BELL家族基因的功能和作用机理积累了有价值的资料。

关键词: BEL1-like基因家族, 基因表达, 系统发育分析, 顺式作用元件

Abstract:

The BEL1-like family (BELL) proteins, that are ubiquitous homeodomain transcription factors among plant species, interact with KNOTTED1-like protein to regulate a range of developmental processes by binding specific cis-acting element to modulate gene expression. BELL family genes in maize still need to be studied systematically. Here, we identified 15 BELL family genes (ZmBELLs) in maize genome using the Hidden Markov Model (HMM). These ZmBELLs distributed non-uniformly in seven chromosomes of maize, were clustered into two groups on the basis of the similarity with their orthologs in Arabidopsis thaliana. Furthermore, these ZmBELLs exhibited different expression[1]patterns in eight tissues studied, showing strong tissues-specific expression. Moreover, based on co-expression profiles and specific motif bound by BEL1-like protein, we predicted 86 genes showing co-expression pattern with 12 ZmBELLs in eight tissues studied and harboring specific motif bound by BEL1-like protein in the promoter region. The results could provide valuable informations for dissecting function and molecular mechanism of ZmBELLs in maize.

Key words: BEL1-like gene family, Gene expression, Phylogenetics, cis-acting element

[1]Gehring W J. Homeoboxes in the study of development. Science, 1987, 236: 1245–1252



[2]Giacomo E D, Iannelli M A, Frugis G. TALE and shape: how to make a leaf different. Plants, 2013, 2: 317–342



[3]Billeter M, Qian Y Q, Otting G, Müller M, Gehring W, Wüthrich K. Determination of the nuclear magnetic resonance solution structure of an Antennapedia homeodomain-DNA complex. J Mol Biol, 1993, 234: 1084–1097



[4]Bürglin T R. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucl Acids Res, 1997, 25: 4173–4180



[5]Bertolino E, Reimund B, Wildt-Perinic D, Clerc R G. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem, 1995, 270: 31178–31188



[6]Chen H, Rosin F M, Prat S, Hannapel D J. Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. Plant Physiol, 2003, 132: 1391–1404



[7]Bellaoui M, Pidkovich M S, Samach A, Kushalappa K, Kohalmi S E, Modrusan Z, Crosby W L, Haughn G W. The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell, 2001, 13: 2455–2470



[8]Hamant O, Pautot V. Plant development: a TALE story. C R Biol, 2010, 333: 371–381



[9]Arnayd N, Pautot V. Ring the BELL and tie the KNOX: roles for TALEs in gynoecium development. Front Plant Sci, 2014, 5: 93



[10]Mukherjee K, Brocchieri L, Bürglin T R. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol, 2009, 26: 2775–2794



[11]Becker A, Bey M, Bürglin T R, Saedler H, Theissen G. Ancestry and diversity of BEL1-like homeobox genes revealed by gymnosperm (Gnetum gnemon) homologs. Dev Genes Evol, 2002, 212: 452–457



[12]Bhatt A M, Etchells J P, Canales C, Lagodienko A, Dickinson H. VAAMANA-a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene, 2004, 328: 103–111



[13]Cole M, Nolte C, Werr W. Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana. Nucl Acids Res, 2006, 34: 1281–1292



[14]Hay A, Tsiantis M. KNOX genes: versatile regulators of plant development and diversity. Development, 2010, 137: 3153–3165



[15]Hackbusch J, Richter K, Müller J, Salamini F, Uhrig J F. A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci USA, 2005, 102: 4908–4912



[16]Kim D, Cho Y H, Ryu H, Kim Y, Kim T H, Hwang I. BLH1 and KNAT3 modulate ABA responses during germination and early seedling development in Arabidopsis. Plant J, 2013, 75: 755–766



[17]Rutjens B, Bao D, van Eck-Stouten E, Brand M, Smeekens S, Proveniers M. Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins. Plant J, 2009, 58: 641–654



[18]郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023–1026



Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29: 1023–1026 (in Chinese with English abstract)



[19]Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucl Acids Res, 2015, 43: D257–260



[20]Smith H M S, Boschke I, Hake S. Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA, 2002, 99: 9579–9584



[21]Smith L G, Greene B, Veit B, Hake S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development, 1992, 116: 21–30



[22]Bolduc N, Yilmaz A, Mejia-Guerra M K, Morohashi K, O'Connor D, Grotewold E, Hake S. Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev, 2012, 26: 1685–1690



[23]Gómez-Mena C, Sablowski R. ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth. Plant Cell, 2008, 20: 2059–2072



[24]Kumar R, Kushalappa K, Godt D, Pidkowich M S, Pastorelli S, Hepworth S R, Haughn G W. The Arabidopsis BEL1-LIKE HOMEODOMAIN proteins SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf margins. Plant Cell, 2007, 19: 2719–2735



[25]Smith H M, Hake S. The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell, 2003, 15: 1717–1727



[26]Ung N, Lal S, Smith H M. The role of PENNYWISE and POUND-FOOLISH in the maintenance of the shoot apical meristem in Arabidopsis. Plant Physiol, 2011, 156: 605–614



[27]Proveniers M, Rutjens B, Brand M, Smeekens S. The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC. Plant J, 2007, 52: 899–913

[1] 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565.
[2] 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190.
[3] 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319.
[4] 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487.
[5] 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449.
[6] 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308.
[7] 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069.
[8] 王小纯, 王露露, 张志勇, 秦步坛, 于美琴, 韦一昊, 马新明. 小麦谷氨酰胺合成酶同工酶转录特点及其启动子序列分析[J]. 作物学报, 2021, 47(4): 761-769.
[9] 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406.
[10] 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198.
[11] 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289.
[12] 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516.
[13] 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285.
[14] 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213.
[15] 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!