作物学报 ›› 2015, Vol. 41 ›› Issue (11): 1632-1639.doi: 10.3724/SP.J.1006.2015.01632
曹征1,**,李曼菲1,**,孙伟1,张丹1,张祖新1,2,*
CAO Zheng1,**,LI Man-Fei1,**,SUN Wei1,ZHANG Dan1,ZHANG Zu-Xin1,2,*
摘要:
BEL1-like (BELL)家族蛋白是植物中普遍存在的一类具有同源异型结构域的转录因子。拟南芥中BELL家族蛋白能与KNOTTED1-like蛋白互作形成异源二聚体,并结合到特异顺式作用元件来调控基因的表达,从而影响植物生长发育进程。本文采用隐马可夫(HMM)模型,在玉米基因组中鉴定到15个BELL家族基因(ZmBELL),分布于7条玉米染色体。通过与拟南芥BELL基因的序列比较将这些基因分为两大类。在玉米8种组织中ZmBELL有不同的表达模式,具有明显的组织表达特异性。基于基因共表达分析及BELL-like蛋白特异结合的顺式元件分析,预测到86个可能受ZmBELL调控的下游靶标基因。这86个基因和12个ZmBELL表达模式相同,并且在基因启动子区存在与BEL1-like蛋白结合的顺式元件。这些结果为进一步解析玉米BELL家族基因的功能和作用机理积累了有价值的资料。
[1]Gehring W J. Homeoboxes in the study of development. Science, 1987, 236: 1245–1252[2]Giacomo E D, Iannelli M A, Frugis G. TALE and shape: how to make a leaf different. Plants, 2013, 2: 317–342[3]Billeter M, Qian Y Q, Otting G, Müller M, Gehring W, Wüthrich K. Determination of the nuclear magnetic resonance solution structure of an Antennapedia homeodomain-DNA complex. J Mol Biol, 1993, 234: 1084–1097[4]Bürglin T R. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucl Acids Res, 1997, 25: 4173–4180[5]Bertolino E, Reimund B, Wildt-Perinic D, Clerc R G. A novel homeobox protein which recognizes a TGT core and functionally interferes with a retinoid-responsive motif. J Biol Chem, 1995, 270: 31178–31188[6]Chen H, Rosin F M, Prat S, Hannapel D J. Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. Plant Physiol, 2003, 132: 1391–1404[7]Bellaoui M, Pidkovich M S, Samach A, Kushalappa K, Kohalmi S E, Modrusan Z, Crosby W L, Haughn G W. The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell, 2001, 13: 2455–2470[8]Hamant O, Pautot V. Plant development: a TALE story. C R Biol, 2010, 333: 371–381[9]Arnayd N, Pautot V. Ring the BELL and tie the KNOX: roles for TALEs in gynoecium development. Front Plant Sci, 2014, 5: 93[10]Mukherjee K, Brocchieri L, Bürglin T R. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol Biol Evol, 2009, 26: 2775–2794[11]Becker A, Bey M, Bürglin T R, Saedler H, Theissen G. Ancestry and diversity of BEL1-like homeobox genes revealed by gymnosperm (Gnetum gnemon) homologs. Dev Genes Evol, 2002, 212: 452–457[12]Bhatt A M, Etchells J P, Canales C, Lagodienko A, Dickinson H. VAAMANA-a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene, 2004, 328: 103–111[13]Cole M, Nolte C, Werr W. Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana. Nucl Acids Res, 2006, 34: 1281–1292[14]Hay A, Tsiantis M. KNOX genes: versatile regulators of plant development and diversity. Development, 2010, 137: 3153–3165[15]Hackbusch J, Richter K, Müller J, Salamini F, Uhrig J F. A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc Natl Acad Sci USA, 2005, 102: 4908–4912[16]Kim D, Cho Y H, Ryu H, Kim Y, Kim T H, Hwang I. BLH1 and KNAT3 modulate ABA responses during germination and early seedling development in Arabidopsis. Plant J, 2013, 75: 755–766[17]Rutjens B, Bao D, van Eck-Stouten E, Brand M, Smeekens S, Proveniers M. Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins. Plant J, 2009, 58: 641–654[18]郭安源, 朱其慧, 陈新, 罗静初. GSDS: 基因结构显示系统. 遗传, 2007, 29: 1023–1026Guo A Y, Zhu Q H, Chen X, Luo J C. GSDS: a gene structure display server. Hereditas, 2007, 29: 1023–1026 (in Chinese with English abstract)[19]Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucl Acids Res, 2015, 43: D257–260[20]Smith H M S, Boschke I, Hake S. Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc Natl Acad Sci USA, 2002, 99: 9579–9584[21]Smith L G, Greene B, Veit B, Hake S. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development, 1992, 116: 21–30[22]Bolduc N, Yilmaz A, Mejia-Guerra M K, Morohashi K, O'Connor D, Grotewold E, Hake S. Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev, 2012, 26: 1685–1690[23]Gómez-Mena C, Sablowski R. ARABIDOPSIS THALIANA HOMEOBOX GENE1 establishes the basal boundaries of shoot organs and controls stem growth. Plant Cell, 2008, 20: 2059–2072[24]Kumar R, Kushalappa K, Godt D, Pidkowich M S, Pastorelli S, Hepworth S R, Haughn G W. The Arabidopsis BEL1-LIKE HOMEODOMAIN proteins SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf margins. Plant Cell, 2007, 19: 2719–2735[25]Smith H M, Hake S. The interaction of two homeobox genes, BREVIPEDICELLUS and PENNYWISE, regulates internode patterning in the Arabidopsis inflorescence. Plant Cell, 2003, 15: 1717–1727[26]Ung N, Lal S, Smith H M. The role of PENNYWISE and POUND-FOOLISH in the maintenance of the shoot apical meristem in Arabidopsis. Plant Physiol, 2011, 156: 605–614[27]Proveniers M, Rutjens B, Brand M, Smeekens S. The Arabidopsis TALE homeobox gene ATH1 controls floral competency through positive regulation of FLC. Plant J, 2007, 52: 899–913 |
[1] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[2] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[3] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[4] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[5] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[6] | 宋天晓, 刘意, 饶莉萍, Soviguidi Deka Reine Judesse, 朱国鹏, 杨新笋. 甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员鉴定及表达分析[J]. 作物学报, 2021, 47(7): 1297-1308. |
[7] | 尹明, 杨大为, 唐慧娟, 潘根, 李德芳, 赵立宁, 黄思齐. 大麻GRAS转录因子家族的全基因组鉴定及镉胁迫下表达分析[J]. 作物学报, 2021, 47(6): 1054-1069. |
[8] | 王小纯, 王露露, 张志勇, 秦步坛, 于美琴, 韦一昊, 马新明. 小麦谷氨酰胺合成酶同工酶转录特点及其启动子序列分析[J]. 作物学报, 2021, 47(4): 761-769. |
[9] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
[10] | 李鹏, 刘彻, 宋皓, 姚盼盼, 苏沛霖, 魏跃伟, 杨永霞, 李青常. 烟草非特异性脂质转移蛋白基因家族的鉴定与分析[J]. 作物学报, 2021, 47(11): 2184-2198. |
[11] | 黄素华, 林席跃, 雷正平, 丁在松, 赵明. 强再生力水稻品种碳氮营养与激素生理特征研究[J]. 作物学报, 2021, 47(11): 2278-2289. |
[12] | 米文博, 方园, 刘自刚, 徐春梅, 刘高阳, 邹娅, 徐明霞, 郑国强, 曹小东, 方新玲. 白菜型冬油菜温敏不育系PK3-12S育性转换的差异蛋白质组学分析[J]. 作物学报, 2020, 46(10): 1507-1516. |
[13] | 靳舒荣,王艳玫,常悦,王月华,李加纳,倪郁. 不同收获指数甘蓝型油菜β-淀粉酶活性及其基因家族成员的表达分析[J]. 作物学报, 2019, 45(8): 1279-1285. |
[14] | 冯韬,官春云. 甘蓝型油菜光敏色素互作因子4 (BnaPIF4)基因克隆和功能分析[J]. 作物学报, 2019, 45(2): 204-213. |
[15] | 赵晶,李旭彤,梁学忠,王志城,崔静,陈斌,吴立强,王省芬,张桂寅,马峙英,张艳. 陆地棉漆酶基因家族鉴定及在黄萎病菌胁迫下的表达分析 *[J]. 作物学报, 2019, 45(12): 1784-1795. |
|