作物学报 ›› 2021, Vol. 47 ›› Issue (4): 714-727.doi: 10.3724/SP.J.1006.2021.01048
赵佳佳1,2(), 乔玲2, 武棒棒2, 葛川1, 乔麟轶1, 张树伟1, 闫素仙2, 郑兴卫2,*(), 郑军2,*()
ZHAO Jia-Jia1,2(), QIAO Ling2, WU Bang-Bang2, GE Chuan1, QIAO Lin-Yi1, ZHANG Shu-Wei1, YAN Su-Xian2, ZHENG Xing-Wei2,*(), ZHENG Jun2,*()
摘要:
小麦苗期根系形态是成株期根系分布的基础, 与抗逆和产量密切相关, 全面认识苗期根系及抗旱特性, 对于抗旱优异种质的利用和早期筛选具有重要意义。采用239份山西省小麦品种(系)在土培条件下, 研究了苗期根系性状及对水分胁迫的响应。结果表明, 正常生长下山西小麦苗期根系性状多样性丰富, 地方种变异最大; 不同年代品种中, 除最大根长随年代略下降外, 其他性状均呈先升后降的趋势; 不同根系性状对水分胁迫响应存在差异, 总根长对水分最敏感, 其次为根表面积、根体积和根生物量, 最大根长和平均根数不敏感。苗期根系综合抗旱能力随年代呈先降后升的趋势, 地方种和20世纪70年代品种多为中抗, 80和90年代的品种抗旱性较低, 2000年以后审定品种的抗性较高, 其中旱地品种抗性最好。苗期根系抗旱特性与产量性状相关分析发现, 最大根长、总根长、根体积和根生物量与雨养条件下的千粒重和产量显著正相关, 最大根长和根生物量与成株期抗旱性也显著正相关。因此苗期最大根长和根生物量可作为半干旱地区旱地育种过程中抗旱性和产量的早期筛选指标。
[1] |
Manschadi A M, Christopher J, Devoil P, Hammer G L. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol, 2006,33:823-837.
pmid: 32689293 |
[2] | Berry P M, Sylvester-Bradly R, Berry S. Ideotype design for lodging-resistant wheat. Euphytica, 2007,154:165-179. |
[3] | Atkinson J A, Wingen L U, Griffiths M, Pound M P, Gaju O, Foulkes M J, Gouis J L, Griffiths S, Bennett M J, King J, Wells D M. Phenotyping pipeline reveals major seedling root growth QTL in hexaploid wheat. J Exp Bot, 2015,66:2283-2292. |
[4] | Veronica M R, Jorge B V, Luis L B, Rafael J L B. Monitoring wheat root development in a rainfed vertisol: tillage effect. Eur J Agron, 2010,33:182-187. |
[5] | Ibrahim S E, Schubert A, Pillen K, Léon J. QTL analysis of drought tolerance for seedling root morphological traits in an advanced backcross population of spring wheat. Int J Agric Sci, 2012,2:619-629. |
[6] |
Placido D F, Campbell M T, Folsom J J, Cui X, Kruger G R, Stephen B P, Walia H. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol, 2013,161:1806-1819.
pmid: 23426195 |
[7] | Feng S W, Gu S B, Zhang H B, Wang D. Root vertical distribution is important to improve water use efficiency and grain yield of wheat. Field Crops Res, 2017,214:131-141. |
[8] | Zobel R W, Wright S F. Primary and secondary root systems. In: Roots and Soil Management: Interactions between Roots and the Soil. ASA, CSSA, and SSSA, Madison, WI, 2005. pp 3-14. |
[9] | Cane M A, Maccaferri M, Nazemi G, Salvi S, Francia R, Colalonga C, Roberto T. Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Mol Breed, 2014,34:1629-1645. |
[10] | Liu X L, Li R Z, Chang X P, Jing R L. Mapping QTLs for seedling root traits in a doubled haploid wheat population under different water regimes. Euphytica, 2013,189:51-66. |
[11] | Kabir M R, Liu G, Guan P F, Wang F, Khan A A, Ni Z F, Yao Y Y, Hu Z R, Xin M M, Peng H R, Sun Q X. Mapping QTLs associated with root traits using two different populations in wheat ( Triticum aestivum L.). Euphytica, 2015,206:175-190. |
[12] |
Xie Q, Fernando K M C, Mayes S, Sparkes D L. Identifying seedling root architectural traits associated with yield and yield components in wheat. Ann Bot, 2017,119:1115-1129.
pmid: 28200109 |
[13] | 苗青霞, 方燕, 陈应龙. 小麦根系特征对干旱胁迫的响应. 植物学报, 2019,54:652-661. |
Miao Q X, Fang Y, Chen Y L. Studies in the responses of wheat root traits to drought stress. Chin Bull Bot, 2019,54:652-661 (in Chinese with English abstract). | |
[14] | Sun Y Y, Zhang S Q, Chen W. Root traits of dryland winter wheat ( Triticum aestivum L.) from the 1940s to the 2010s in Shaanxi province, China. Sci Rep, 2020,10:5328. |
[15] | An D G, Su J Y, Liu Q Y, Zhu Y G, Tong Y P, Li J M, Jing R L, Li B, Li Z S. Mapping QTLs for nitrogen uptake in relation to the early growth of wheat ( Triticum aestivum L.). Plant Soil, 2006,284:73-84. |
[16] | Fan X L, Zhang W, Zhang N, Chen M, Zheng S S, Zhao C H, Han J, Liu J J, Zhang X L, Song L Q, Ji J, Liu X G, Ling H Q, Tong Y P, Cui F, Wang T, Li J M. Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat ( Triticum aestivum L.). Theor Appl Genet, 2018,131:2677-2698. |
[17] | Ayalew H, Ma X, Yan G. Screening wheat ( Triticum spp.) genotypes for root length under contrasting water regimes: potential sources of variability for drought resistance breeding. J Agron Crop Sci, 2015,201:189-194. |
[18] | Christopher J, Christopher M J, Jennings R, Jones S, Fletcher S, Borrell A, Manschadi A M, Jordan D, Mace E, Hammer G. QTL for root angle and number in a population developed from bread wheats ( Triticum aestivum) with contrasting adaptation to water- limited environments. Theor Appl Genet, 2013,126:1563-1574. |
[19] | Bai C H, Liang Y L, Hawkesford M J. Identification of QTLs associated with seedling root traits and their correlation with plant height in wheat. J Exp Bot, 2013,64:1745-1753. |
[20] | Hamada A, Nitta M, Nasuda S, Kato K, Fujita M, Matsunaka H, Okumoto Y. Novel QTLs for growth angle of seminal roots in wheat ( Triticum aestivum L.). Plant Soil, 2012,354:395-405. |
[21] | Cao P, Ren Y Z, Zhang K P, Teng W, Zhao X Q, Dong Z Y, Liu X, Qin H J, Li Z S, Wang D W, Tong Y P. Further genetic analysis of a major quantitative trait locus controlling root length and related traits in common wheat. Mol Breed, 2014,33:975-985. |
[22] | 肖永贵, 路亚明, 闻伟锷, 陈新民, 夏先春, 王德森, 李思敏, 童依平, 何中虎. 小麦骨干亲本京411及衍生品种苗期根部性状的遗传. 中国农业科学, 2014,47:2916-2926. |
Xiao Y G, Lu Y M, Wen W E, Chen X M, Xia X C, Wang D S, Li S M, Tong Y P, He Z H. Genetic contribution of seedling root traits among elite wheat parent Jing 411 to its derivatives. Sci Agric Sin, 2014,47:2916-2926 (in Chinese with English abstract). | |
[23] | 景蕊莲, 昌小平, 朱志华, 胡荣海. 小麦幼苗根系形态与反复干旱存活率的关系. 西北植物学报, 2002,22:243-249. |
Jing R L, Chang X P, Zhu Z H, Hu R H. Relationship between root morphology of wheat ( T. aestivum) and survival percentage under repeated drought condition. Acta Bot Boreali-Occident Sin, 2002,22:243-249 (in Chinese with English abstract). | |
[24] | 马富举, 李丹丹, 蔡剑, 姜东, 曹卫星, 戴廷波. 干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响. 应用生态学报, 2012,23:724-730. |
Ma F J, Li D D, Cai J, Jiang D, Cao W X, Dai T B. Responses of wheat seedlings root growth and leaf photosynthesis to drought stress. Chin J Appl Ecol, 2012,23:724-730 (in Chinese with English abstract). | |
[25] | Dhanda S S, Sethi G S, Behl R K. Indices of drought tolerance in wheat genotypes at early stages of plant growth. J Agron Crop Sci, 2004,190:6-12. |
[26] | Landjeva S, Neumann K, Lohwasser U, Börner A. Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biol Plant, 2008,52:259-266. |
[27] | 周晓果, 景蕊莲, 郝转芳, 昌小平, 张正斌. 小麦幼苗根系性状的QTL分析. 中国农业科学, 2005,38:1951-1957. |
Zhou X G, Jing R L, Hao Z F, Chang X P, Zhang Z B. Mapping QTL for seedling root traits in common wheat. Sci Agric Sin, 2005,38:1951-1957 (in Chinese with English abstract). | |
[28] | 胡雯媚, 王思宇, 樊高琼, 刘运军, 郑文, 王强生, 马宏亮. 西南麦区小麦品种苗期抗旱性鉴定及其指标筛选. 麦类作物学报, 2016,36:182-193. |
Hu W M, Wang S Y, Fan G Q, Liu Y J, Zheng W, Wang Q S, Ma H L. Analysis on the drought resistance and screening of drought resistance appraisal indexes of wheat cultivars in seedling stage in southwest area. J Triticeae Crops, 2016,36:182-189 (in Chinese with English abstract). | |
[29] | Zhu Y H, Weiner J, Yu M X, Li F M. Evolutionary agroecology: trends in root architecture during wheat breeding. Evol Appl, 2019,12:733-743. |
[30] | 张荣, 张大勇. 半干旱区春小麦不同年代品种根系生长冗余的比较实验研究. 植物生态学报, 2000,24:298-303. |
Zhang R, Zhang D Y. A comparative study on root redundancy in spring wheat varieties released in different years in semi-arid area. Chin J Plant Ecol, 2000,24:298-303 (in Chinese with English abstract). | |
[31] | 田中伟, 樊永惠, 殷美, 王方瑞, 蔡剑, 姜东, 戴廷波. 长江中下游小麦品种根系改良特征及其与产量的关系. 作物学报, 2015,41:613-622. |
Tian Z W, Fan Y H, Yin M, Wang F R, Cai J, Jiang D, Dai T B. Genetic improvement of root growth and its relationship with grain yield of wheat cultivars in the middle-lower Yangtze river. Acta Agron Sin, 2015,41:613-622 (in Chinese with English abstract). | |
[32] | 唐淼, 王晓毅, 侯侃, 侯亮亮. 山西晋中小南庄墓地人骨的C、N稳定同位素:试析小麦在山西的推广. 人类学学报, 2018,37:318-330. |
Tang M, Wang X Y, Hou K, Hou L L. Carbon and nitrogen stable isotope of the human bones from the Xiaonanzhuang cemetery, Jinzhong, Shanxi: A preliminary study on the expansion of wheat in ancient Shanxi, China. Acta Anthropol Sin, 2018,37:318-330 (in Chinese with English abstract). | |
[33] | 赵佳佳, 乔玲, 郑兴卫, 李晓华, 曹勇, 马小飞, 杨斌, 姬虎太, 乔麟轶, 郑军, 张建诚. 山西小麦育成品种品质性状及HMW-GS组成演变分析. 植物遗传资源学报, 2018,19:1126-1137. |
Zhao J J, Qiao L, Zheng X W, Li X H, Cao Y, Ma X F, Yang B, Ji H T, Qiao L Y, Zheng J, Zhang J C. Variation of quality-related traits and HMW-GS of wheat varieties in Shanxi province. J Plant Genet Resour, 2018,19:1126-1137 (in Chinese with English abstract). | |
[34] | 吕学莲, 白海波, 惠建, 田小燕, 杨宸刚, 马斯霜, 蔡正云, 李树华. 籼粳稻杂交衍生RIL系的苗期抗旱性评价. 植物遗传资源学报, 2019,20:556-563 |
Lyu X L, Bai H B, Hui J, Tian X Y, Yang C G, Ma S S, Cai Z Y, Li SH. Evaluation of seedling drought resistance of RIL derived from indica rice and japonica rice. J Plant Genet Resour, 2019,20:556-563 (in Chinese with English abstract). | |
[35] | Ming D F, Pei Z F, Naeem M S, Gong H J, Zhou W J. Silicon alleviates PEG-induced water-deficit stress in upland rice seedlings by enhancing osmotic adjustment. J Agron Crop Sci, 2012,198:14-26. |
[36] |
Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ, 2017,40:4-10.
pmid: 27417527 |
[37] | 慕自新, 张岁岐, 梁爱华, 梁宗锁. 玉米整株根系水导与其表型抗旱性的关系. 作物学报, 2005,31:203-208. |
Mu Z X, Zhang S Q, Liang A H, Liang Z S. Relationship between maize root hydraulic conductivity and drought resistance. Acta Agron Sin, 2005,31:203-208 (in Chinese with English abstract). | |
[38] | 王贺正, 李艳, 马均, 张荣萍, 李旭毅, 汪仁全. 水稻苗期抗旱性指标的筛选. 作物学报, 2007,33:1523-1529. |
Wang H Z, Li Y, Ma J, Zhang R P, Li X Y, Wang R Q. Screening indexes of drought resistance during seedling stage in rice. Acta Agron Sin, 2007,33:1523-1529 (in Chinese with English abstract). | |
[39] | 赵言文, 丁艳锋, 陈留根, 黄丕生. 水稻旱育秧苗抗旱生理特性研究. 中国农业科学, 2001,34:283-291. |
Zhao Y W, Ding Y F, Chen L G, Huang P S. Physiological characteristics of drought resistance of rice dry nursery seedlings. Sci Agric Sin, 2001,34:283-291 (in Chinese with English abstract). | |
[40] | Liao M, Fillery I, Palta J. Early vigorous growth is a major factor influencing nitrogen uptake in wheat. Funct Plant Biol, 2004,31:121-129. |
[41] | 陈成升, 谢志霞, 刘小京. 旱盐互作对冬小麦幼苗生长及其抗逆生理特性的影响. 应用生态学报, 2009,20:811-816. |
Chen C S, Xie Z X, Liu X J. Interactive effects of drought and salt stresses on winter wheat seedling growth and physio logical characteristics of stress resistance. Chin J Appl Ecol, 2009,20:811-816 (in Chinese with English abstract). | |
[42] | 魏道智, 宁书菊, 林文雄. 小麦根系活力变化与叶片衰老的研究. 应用生态学报, 2004,15:1565-1569. |
Wei D Z, Ning S J, Lin W X. Relationship between wheat root activity and leaf senescence. Chin J Appl Ecol, 2004,15:1565-1569 (in Chinese with English abstract). | |
[43] |
Sandhu N, Subedi S R, Singh V K, Sinha P, Kumar S, Singh S P, Ghimire S K, Pandey M, Yadaw R B, Varshney R K, Kumar A. Deciphering the genetic basis of root morphology, nutrient uptake, yield, and yield-related traits in rice under dry direct-seeded cultivation systems. Sci Rep, 2019,9:9334.
pmid: 31249338 |
[44] | 李龙, 毛新国, 王景一, 昌小平, 柳玉平, 景蕊莲. 小麦种质资源抗旱性鉴定评价. 作物学报, 2018,44:988-999. |
Li L, Mao X G, Wang J Y, Chang X P, Liu Y P, Jing R L. Drought tolerance evaluation of wheat germplasm resources. Acta Agron Sin, 2018,44:988-999 (in Chinese with English abstract). |
No related articles found! |
|