作物学报 ›› 2021, Vol. 47 ›› Issue (7): 1239-1247.doi: 10.3724/SP.J.1006.2021.04217
摘要:
阿拉伯半乳聚糖蛋白(arabinogalactan proteins, AGP)在棉花纤维发育过程中发挥重要作用。AGP由富含羟脯氨酸的主链蛋白和大量II型阿拉伯半乳聚糖(arabinogalactan, AG)侧链组成, 其合成过程要经历2次翻译后修饰, 首先是氨基酸主链上的脯氨酸被脯氨酸羟化酶(prolyl-4-hydroxylases, P4H)羟基化, 随后在糖基转移酶(glycosyltransferases, GT)催化作用下将阿拉伯半乳聚糖或寡糖添加到羟脯氨酸残基上。我们前期利用P4Hs的抑制剂处理棉花离体胚发现, 棉纤维伸长受到抑制, 暗示P4H参与棉纤维生长发育过程。为深入研究P4H在棉纤维发育中的功能, 我们从棉花中分离鉴定了1个在棉纤维发育过程中高量表达的脯氨酸羟化酶基因GhP4H2。本研究分别构建了GhP4H2过表达和RNA interference (RNAi)载体, 通过农杆菌介导法转化棉花, 获得转基因植株, 发现过表达转基因棉花株系T1~T3代成熟棉纤维变短, AGP含量增加, AG多糖侧链也发生变化。对过表达转基因植株和野生型植株棉纤维的转录组分析表明, GhP4H2正调控包括AGP在内的细胞壁糖蛋白基因的表达。基于以上研究, 我们推测GhP4H2可能主要通过影响AGP糖链组分调控棉纤维生长发育。
[1] |
Haigler C H, Betancur L, Stiff M R, Tuttle J R. Cotton fiber: a powerful single-cell model for cell wall and cellulose research. Front Plant Sci, 2012,3:104.
doi: 10.3389/fpls.2012.00104 pmid: 22661979 |
[2] |
Minorsky P V. The wall becomes surmountable. Plant Physiol, 2002,128:345-353.
pmid: 11842138 |
[3] |
Ellis M, Egelund J, Schultz C J, Bacic A. Arabinogalactan- proteins: key regulators at the cell surface? Plant Physiol, 2010,153:403-419.
doi: 10.1104/pp.110.156000 pmid: 20388666 |
[4] |
Showalter A M. Structure and function of plant cell wall proteins. Plant Cell, 1993,5:9-23.
doi: 10.1105/tpc.5.1.9 pmid: 8439747 |
[5] |
Showalter A M, Keppler B, Lichtenberg J, Gu D, Welch L R. A bioinformatics approach to the identification, classification, and analysis of hydroxyproline-rich glycoproteins. Plant Physiol, 2010,153:485-513.
doi: 10.1104/pp.110.156554 pmid: 20395450 |
[6] |
Estanyol J M, Avita L R, Puigdomenech P. A maize embro- specific gene encode a proline-rich and hydrophobic protein. Plant Cell, 1992,4:413-423.
doi: 10.1105/tpc.4.4.413 pmid: 1498600 |
[7] |
Estanyol J M, Puigdomenech P. Development and hormonal regulation of genes coding for proline-rich proteins in female inflorescences and kernels of maize. Plant Physiol, 1998,116:485-494.
doi: 10.1104/pp.116.2.485 pmid: 9490753 |
[8] |
He C Y, Zhang J S, Chen S Y. A soybean gene encoding aproline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet, 2002,104:1125-1131.
pmid: 12582622 |
[9] | 许文亮, 黄耿青, 王秀兰, 邰付菊, 汪虹, 李学宝. 两个棉花HyPRP基因的分子鉴定与初步表达分析. 作物学报, 2007,33:1146-1153. |
Xu W L, Huang G Q, Wang X L, Tai F J, Wang H, Li X B. Molecular characterization and expression analysis of two genes encoding hybrid proline-rich proteins in cotton. Acta Agron Sin, 2007,33:1146-1153 (in Chinese with English abstract). | |
[10] | 张德静, 秦丽霞, 李龙, 饶玥, 李学宝, 许文亮. 异源表达棉花GhPRP5基因增强了拟南芥对盐和ABA的敏感性. 作物学报, 2013,39:563-569. |
Zhang D J, Qin L X, Li L, Rao Y, Li X B, Xu W L. Expression of cotton GhPRP5 gene in Arabidopsis enhances susceptibility to ABA and salt stresses. Acta Agron Sin, 2013,39:563-569 (in Chinese with English abstract). | |
[11] |
Xu W L, Zhang D J, Wu Y F, Qin L X, Huang G Q, Li J, Li L, Li X B. Cotton PRP5 gene encoding a proline-rich protein is involved in fiber development. Plant Mol Biol, 2013,82:353-365.
doi: 10.1007/s11103-013-0066-8 pmid: 23625445 |
[12] | 秦丽霞, 李学宝, 许文亮. 植物阿拉伯半乳聚糖蛋白AG糖链的合成. 植物生理学报, 2018,54:1263-1271. |
Qin L X, Li X B, Xu W L. Synthesis of plant arabinogalactan protein AG sugar chain. Plant Physiol J, 2018,54:1263-1271 (in Chinese with English abstract). | |
[13] |
Shpak E, Leykam J F, Kieliszewski M J. Synthetic genes for glycoprotein design and the elucidation of hydroxyproline-O- glycosylation. Proc Natl Acad Sci USA, 1999,96:14736-14741.
doi: 10.1073/pnas.96.26.14736 pmid: 10611282 |
[14] |
Van Hengel A J, Roberts K. Fucosylated arabinogalactan-proteins are required for full root cell elongation in Arabidopsis. Plant J, 2002,32:105-113.
doi: 10.1046/j.1365-313x.2002.01406.x pmid: 12366804 |
[15] |
Wu H M, Wong E, Ogdahl J, Cheung A Y. A pollen tube growth promoting arabinogalactan protein from Nicotiana alata is similar to the tobacco TTS protein. Plant J, 2000,22:165-176.
doi: 10.1046/j.1365-313x.2000.00731.x pmid: 10792832 |
[16] |
Schultz C J, Rumsewicz M P, Johnson K L, Jones B J, Gaspar Y M, Bacic A. Using genomic resources to guide research directions. The arabinogalactan protein gene family as a test case. Plant Physiol, 2002,129:1448-1463.
doi: 10.1104/pp.003459 pmid: 12177459 |
[17] |
Ma H, Zhao J. Genome-wide identification, classification, and expression analysis of the arabinogalactan protein gene family in rice (Oryza sativa L.). J Exp Bot, 2010,61:2647-2668.
doi: 10.1093/jxb/erq104 pmid: 20423940 |
[18] |
Faik A, Abouzouhair J, Sarhan F. Putative fasciclin-like arabinogalactan-proteins (FLA) in wheat (Triticum aestivum) and rice( Oryza sativa): identification and bioinformatic analyses. Mol Genet Genomics, 2006,276:478-494.
doi: 10.1007/s00438-006-0159-z pmid: 16944204 |
[19] |
Showalter A M, Keppler B D, Liu X, Lichtenberg J, Welch L R. Bioinformatic identification and analysis of hydroxyproline-rich glycoproteins in populus trichocarpa. BMC Plant Biol, 2016,16:229.
doi: 10.1186/s12870-016-0912-3 pmid: 27769192 |
[20] |
Guerriero G, Mangeot P L, Legay S, Behr M, Lutts S, Siddiqui K S, Hausman J F. Identification of fasciclin-like arabinogalactan proteins in textile hemp (Cannabis sativa L.): in silico analyses and gene expression patterns in different tissues. BMC Genomics, 2017,18:741.
pmid: 28931375 |
[21] |
Huang G Q, Gong S Y, Xu W L, Li W, Li P, Zhang C J, Li D D, Zheng Y, Li F G, Li X B. A fasciclin-like arabinogalactan protein, GhFLA1, is involved in fiber initiation and elongation of cotton. Plant Physiol, 2013,161:1278-1290.
doi: 10.1104/pp.112.203760 pmid: 23349362 |
[22] |
Liu H, Shi R, Wang X, Pan Y, Li Z, Yang X, Zhang G, Ma Z. Characterization and expression analysis of a fiber differentially expressed fasciclin-like arabinogalactan protein gene in sea island cotton fibers. PLoS One, 2013,8:e70185.
doi: 10.1371/journal.pone.0070185 pmid: 23875019 |
[23] |
Qin L X, Chen Y, Zeng W, Li Y, Gao L, Li D D, Bacic A, Xu W L, Li X B. The cotton β-galactosyltransferase 1 (GalT1) that galactosylates arabinogalactan proteins participates in controlling fiber development. Plant J, 2017,89:957-971.
doi: 10.1111/tpj.13434 pmid: 27888523 |
[24] |
Marzol E, Borassi C, Bringas M, Sede A, Garcia D R R, Capece L, Estevez J M. Filling the gaps to solve the extensin puzzle. Mol Plant, 2018,11:645-658.
doi: 10.1016/j.molp.2018.03.003 pmid: 29530817 |
[25] |
Kivirikko K I, Myllyharju J. Prolyl 4-hydroxylases and their protein disulfide isomerase subunit. Matrix Biol, 1998,16:357-368.
doi: 10.1016/s0945-053x(98)90009-9 pmid: 9524356 |
[26] |
Kivirikko K I, Pihlajaniemi T. Collagen hydroxylases and the protein disulfide isomerase subunit of prolyl-4-hydroxylases. Adv Enzymol Relat Areas Mol Biol, 1998,72:325-398.
doi: 10.1002/9780470123188.ch9 pmid: 9559057 |
[27] |
Durufle H, Herve V, Balliau T, Zivy M, Dunand C, Jamet E. Proline hydroxylation in cell wall proteins: is it yet possible to define rules? Front Plant Sci, 2017,8:1802.
doi: 10.3389/fpls.2017.01802 pmid: 29089960 |
[28] |
Keskiaho K, Hieta R, Sormunen R, Myllyharju J. Chlamydo- monas reinhardtii has multiple prolyl 4-hydroxylases, one of which is essential for proper cell wall assembly. Plant Cell, 2007,19:256-269.
doi: 10.1105/tpc.106.042739 pmid: 17220203 |
[29] |
Koski M K, Hieta R, Böllner C, Kivirikko K I, Myllyharju J, Wierenga R K. The active site of an algal prolyl 4-hydroxylase has a large structural plasticity. J Biol Chem, 2007,282:37112-37123.
doi: 10.1074/jbc.M706554200 pmid: 17940281 |
[30] |
Asif M H, Trivedi P K, Misra P, Nath P. Prolyl-4-hydroxylase ( AtP4H1) mediates and mimics low oxygen response in Arabidopsis thaliana. Funct Integr Genomics, 2009,9:525-535.
doi: 10.1007/s10142-009-0118-y pmid: 19277739 |
[31] |
Velasquez S M, Ricardi M M, Poulsen C P, Oikawa A, Dilokpimol A, Halim A, Mangano S, Juarez S P D, Marzol E, Salter J D S, Dorosz J G, Borassi C, Moller S R, Buono R, Ohsawa Y, Matsuoka K, Otegui M S, Scheller H V, Geshi N, Petersen B L, Iusem N D, Estevez J M. Complex regulation of prolyl- 4-hydroxylases impacts root hair expansion. Mol Plant, 2015,8:734-746.
doi: 10.1016/j.molp.2014.11.017 pmid: 25655826 |
[32] |
Fragkostefanakis S, Sedeek K E M, Raad M, Zaki M S, Kalaitzis P. Virus induced gene silencing of three putative prolyl 4-hydroxylases enhances plant growth in tomato ( Solanum lycopersicum). Plant Mol Biol, 2014,85:459-471.
doi: 10.1007/s11103-014-0197-6 pmid: 24803411 |
[1] | 许乃银,李健. 利用GGE双标图划分长江流域棉花纤维品质生态区[J]. 作物学报, 2014, 40(05): 891-898. |
[2] | 李伟,商海红,王少干,范森淼,李俊文,刘爱英,石玉真,龚举武,巩万奎,王涛,白志川,袁有禄. 三个陆地棉水孔蛋白基因的克隆与表达分析[J]. 作物学报, 2013, 39(02): 222-229. |
[3] | 张美玲, 宋宪亮, 孙学振, 王振林, 赵庆龙, 李宗泰, 姬红, 许晓龙. 彩色棉纤维分化及色素沉积过程观察[J]. 作物学报, 2011, 37(07): 1280-1288. |
[4] | 张美玲,宋宪亮,孙学振,陈二影,赵庆龙,李宗泰. 彩色棉纤维发育过程中超分子结构变化与纤维品质的关系[J]. 作物学报, 2010, 36(08): 1386-1392. |
[5] | 琚铭, 王海棠, 王立科, 李飞飞, 吴慎杰, 朱华玉, 张天真, 郭旺珍. 棉纤维发育相关基因时空表达与纤维品质的关联分析[J]. 作物学报, 2009, 35(7): 1217-1228. |
[6] | 马溶慧;许乃银;张传喜;李文峰;冯营;屈磊;王友华;周治国. 氮素调控棉花纤维蔗糖代谢及纤维比强度的生理机制[J]. 作物学报, 2008, 34(12): 2143-2151. |
[7] | 詹少华;林毅;蔡永萍;吴甘霖;李正鹏. 棕色棉纤维中酚类物质动态变化与色素合成的关系[J]. 作物学报, 2006, 32(11): 1684-1688. |
[8] | 王友华;陈兵林;卞海云;蒋光华;张文静;胡宏标;束红梅;周治国. 温度与棉株生理年龄的协同效应对棉纤维发育的影响[J]. 作物学报, 2006, 32(11): 1671-1677. |
[9] | 陶灵虎;刘稳生;封国林;阮锡根;邓家佩. 棉纤维品质性状与取向参数的关系(Ⅱ)[J]. 作物学报, 1999, 25(03): 396-400. |
[10] | 过兴先;曾伟;苏玉兰. 棉叶光合产物的积累和输出及其与夜温和纤维发育之关系[J]. 作物学报, 1991, 17(02): 115-122. |
|