欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (7): 1309-1323.doi: 10.3724/SP.J.1006.2021.01061

• 作物遗传育种·种质资源·分子遗传学 • 上一篇    下一篇

78份四川小麦育成品种(系)条锈病抗性鉴定与抗条锈病基因分子检测

习玲1,2, 王昱琦1,2, 朱微1,2, 王益1,2, 陈国跃1,2, 蒲宗君3, 周永红1,2, 康厚扬1,2,*()   

  1. 1四川农业大学小麦研究所, 四川成都 611130
    2西南作物基因资源发掘与利用国家重点实验室, 四川成都 611130
    3四川省农业科学院作物研究所, 四川成都 610066
  • 收稿日期:2020-08-02 接受日期:2020-11-13 出版日期:2021-07-12 网络出版日期:2020-12-22
  • 通讯作者: 康厚扬
  • 作者简介:E-mail: 1043975458@qq.com, Tel: 028-86250350
  • 基金资助:
    本研究由“十三五”国家重点研发计划项目(2017YFD0100900);四川省应用基础重点项目资助(2020YJ0348)

Identification of resistance to wheat and molecular detection of resistance genes to wheat stripe rust of 78 wheat cultivars (lines) in Sichuan province

XI Ling1,2, WANG Yu-Qi1,2, ZHU Wei1,2, WANG Yi1,2, CHEN Guo-Yue1,2, PU Zong-Jun3, ZHOU Yong-Hong1,2, KANG Hou-Yang1,2,*()   

  1. 1Triticeae Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Chengdu 611130, Sichuan, China
    3Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, Sichuan, China
  • Received:2020-08-02 Accepted:2020-11-13 Published:2021-07-12 Published online:2020-12-22
  • Contact: KANG Hou-Yang
  • Supported by:
    This study was supported by the National Key Research and Development Program of China(2017YFD0100900);the Science and Technology Bureau of Sichuan Province(2020YJ0348)

摘要:

四川省是小麦条锈菌新小种产生的重要地区之一, 了解2016年以来四川小麦育成品种(系)对当前流行的条锈菌生理小种和致病类型的抗性水平以及明确其抗条锈病基因的分布状况, 可为四川育种防控小麦抗条锈病和品种布局提供理论依据。本研究选择2个小种CYR32和CYR34对78份四川小麦育成品种(系)进行苗期鉴定, 利用当前小麦条锈菌优势小种CYR32、CYR33、CYR34, 以及贵22-14、贵农致病类群等混合菌进行成株期人工接种鉴定, 并利用19个抗条锈病QTL和基因QYr.nwafu-4BLYr5Yr10Yr15Yr17Yr18Yr26Yr28Yr29Yr30Yr36Yr39Yr41Yr48Yr65Yr67Yr78Yr80Yr81的分子标记对供试材料进行抗条锈病基因检测。结果表明, 在78份供试材料的苗期鉴定中, 对CYR32表现出抗性的有60份, 占76.92%; 对CYR34表现出抗性的有40份, 占51.28%; 同时对CYR32和CYR34表现抗性的有36份, 占46.15%。78份小麦品种(系)在成株期均表现抗条锈病, 其中绵麦835、蜀麦1743、蜀麦1829和蜀麦1868表现为免疫。苗期和成株期抗病性鉴定结果表明, 成株期抗性材料有42份, 占53.85%; 全生育期抗性材料有36份, 占46.15%。分子检测结果表明, 可能携带QYr.nwafu-4BLYr15Yr17Yr18Yr26Yr28Yr29Yr30Yr39Yr41Yr65Yr67Yr78Yr80Yr81的材料分别有5、5、45、2、30、5、30、39、3、2、22、8、23、6和24份。同时携带2~6个抗条锈病基因的聚合材料分别有24、22、11、14和3份, 占94.87%。所有供试品种(系)均未检测到Yr5Yr10Yr36Yr48, 仅西科麦18未检测到上述19个抗条锈病基因, 可能携带其他已知或新的条锈病抗性基因。本研究鉴定了78份四川小麦育成品种(系)对条锈病抗性水平整体较好, 明确了其携带的抗条锈病基因, 为利用其培育持久抗性小麦品种提供了科学依据。

关键词: 小麦条锈病, 小麦品种(系), 抗性评价, 分子检测

Abstract:

Sichuan province is one of the main origins of new races of the wheat stripe rust pathogen. To understand the resistance level of wheat cultivars (lines) bred in Sichuan since 2016 to the current predominant races of the pathogen and pathotypes and to clarify the distribution of resistance genes can provide a theoretical basis for the management of wheat stripe rust by breeding resistance wheat cultivars and wheat variety deployment in Sichuan. In this study, 78 Sichuan wheat cultivars (lines) were identified at seedling stage by two races CYR32 and CYR34. At adult plant stage in wheat, the mixture of the current predominant races of CYR32, CYR33, CYR34, G22-14, and G22 pathogenic groups virulent to wheat cultivar Guinong 22 were artificially inoculated to assess the resistance of the tested wheat. Nineteen resistance genes and QTLs, including QYr.nwafu-4BL, Yr5, Yr10, Yr15, Yr17, Yr18, Yr26, Yr28, Yr29, Yr30, Yr36, Yr39, Yr41, Yr48, Yr65, Yr67, Yr78, Yr80, and Yr81, were detected the presence of the resistance genes in all tested materials. The results showed that 60 (76.92%) of the 78 tested materials were resistant to CYR32, 40 (51.28%) resistant to CYR34, and 36 (46.15%) resistant to both races at seedling stage. Seventy-eight wheat materials were resistant to wheat stripe rust at adult stage, 4 out of which, including Mianmai 835, Shumai 1743, Shumai 1829, and Shumai 1868, were immune to the disease. Disease resistance identification showed that 42 (53.85%) exhibited adult plant resistance and 36 (46.15%) were all stage resistant to wheat stripe rust. Molecular detection indicated that 5, 5, 45, 2, 30, 5, 30, 39, 3, 2, 22, 8, 23, 6, and 24 carried the resistance gene QYr.nwafu-4BL, Yr15, Yr17, Yr18, Yr26, Yr28, Yr29, Yr30, Yr39, Yr41, Yr65, Yr67, Yr78, Yr80, and Yr81, respectively. Two to six resistance genes were detected in 24, 22, 11, 14, and 3 of the tested wheat materials, accounting for 94.87%. Yr5, Yr10, Yr36, and Yr48 were not detected in all wheat cultivars (lines), and only Xikemai 18, not detected any of the 19 resistance genes mentioned above, presumably, may carried other known or new resistance genes to wheat stripe rust. In summary, that resistance level of 78 wheat cultivars (lines) to wheat stripe rust was identified, and the resistance genes of these cultivars were identified. These results provide scientific basis for breeding durable resistant wheat cultivar.

Key words: stripe rust of wheat, wheat cultivars (lines), resistance evaluation, molecular detection

表1

抗条锈病基因的分子标记及引物序列"

Yr基因
Yr gene
类别a
Type a
分子标记
Molecular marker
引物序列
Primer sequence (5′?3′)
参考文献
Reference
QYr.nwafu-4BL KASP AX-110963704 GAAGGTGACCAAGTTCATGCTTCGTTTGCCTATGGTTCAAAAC [31]
GAAGGTCGGAGTCAACGGATTTCGTTTGCCTATGGTTCAAAAG
TCTCCATGACACGGGAGGAT
Yr5 DM Yr5_B GGGAACACTTCACGATCA [32]
AATTCCTTCATGCCTTCC
DM Yr5_A CGCTTAATTCCCCTTCCTTC [32]
TGGCTCCTTATTCGTTCTCTTTC
KASP Yr5F GAAGGTGACCAAGTTCATGCTGCGCCCCTTTTCGAAAAAATA [32]
Yr5H GAAGGTCGGAGTCAACGGATTCTAGCATCAAACAAGCTAAATA
Yr5R ATGTCGAAATATTGCATAACATGG
Yr10 AFLP SC200 CTGCAGAGTGACATCATACA [33]
TCGAACTAGTAGATGCTGGC
DM Yr10-5 GGAAATGTGGCGGAGTACCA [34]
CGGAAGGGAGAACCACTGTC
DM Yr10-6 CAGCTTGACAAGGGCGAGTA [34]
CGCTTGTCGCCAATTCCAAA
Yr15 DM Y15K1_F2 GGAGATAGAGCACATTACAGAC [35]
uhw301R GGAGATAGAGCACATTACAGAC
DM WJL2F CCTTGTGTGCTACCAGGGTT [36]
WJL2R GGAACTCAAGCCCTTCTGCT
DM WJL3F AAAAGAGCTCGCCTCCTACG [37]
WJL3R GCCATGATGAGATCGGGAGG
Yr17 SCAR SC2372 AGGGGCTACTGACCAAGGCT [38]
TGCAGCTACAGCAGTATGTACACAAAA
Yr18 STS csLV34 GTTGGTTAAGACTGGTGATGG [39]
TGCTTGCTATTGCTGAATAGT
Cssfr1 L34DINT9F TTGATGAAACCAGTTTTTTTTCTA [39]
L34PLUSR GCCATTTAACATAATCATGATGGA
KASP Lr34-KASP-E11 GAAGGTGACCAAGTTCATGCTGGGAGCATTATTTTTTTCCATCA [40]
GAAGGTCGGAGTCAACGGATTGGGAGCATTATTTTTTTCCATCT
AGCGAATCCAGTATGGAAAT
Yr26 STS Xwe173 GGGACAAGGGGAGTTGAAGC [41]
GAGAGTTCCAAGCAGAACAC
STS Xwe33 TAAACCAAGTCCCCCAAA [41]
GGAGTCCATCTTCACCGA
Yr28 InDel ZCZp343F TGTGTCATGTTTGGTCGATAGG [42]
ZCZp342R TCCTCCCTTGTAGCTTCACG

(续表1)

"

Yr基因
Yr gene
类别a
Type a
分子标记
Molecular marker
引物序列
Primer sequence (5′?3′)
参考文献
Reference
Yr28 DM P175 GCACCGTCCTTCATCTCAGT [42]
P176 TGCTTTTCCCCGTATCCCTT
Yr29 CAPS csLV46 CGAGACGTCGTCTTCTCTAAC [43]
GTGTATGTGTTGATTCTCCTCG
Yr30 SSR Xgwm533 GTTGCTTTAGGGGAAAAGCC [44]
AAGGCGAATCAAACGGAATA
Yr36 DM WKS1_150F ATGGAGCTCCCACGAAACAAAC [45]
WKS1_620R ACCTCCATGTTGCTCGCATTTGCT
DM WKS1_182F TAGCTCTTCGTGGCCAAAGG [45]
WKS1_150R TGGCCACGAAGAGCTAAAGG
Yr39 SSR Xgwm131 AATCCCCACCGATTCTTCTC [46]
AGTTCGTGGGTCTCTGATGG
Yr41 SSR Xgwm410 GCTTGAGACCGGCACAGT [47]
CGAGACCTTGAGGGTCTAGA
SSR Xgwm374 ATAGTGTGTTGCATGCTGTGTG [47]
TCTAATTAGCGTTGGCTGCC
Yr48 SSR Xwmc727 CATAATCAGGACAGCCGCAC [48]
TAGTGGCCTGATGTATCTAGTTGG
SSR Xwms291 CATCCCTACGCCACTCTGC [48]
AATGGTATCTATTCCGACCCG
Yr65 SSR Xgwm18 GGTTGCTGAAGAACCTTATTTAGG [49]
TGGCGCCATGATTGCATTATCTTC
Yr67 SSR Xbarc182 CCATGGCCAACAGCTCAAGGTCTC [50]
CGCAAAACCGCATCAGGGAAGCACCAAT
SSR Xcfa2040 TCAAATGATTTCAGGTAACCACTA [50]
TTCCTGATCCCACCAAACAT
Yr78 KASP IWA7257 GAAGGTGACCAAGTTCATGCTAGACCCTACGACGTTAGCGC [51]
GAAGGTCGGAGTCAACGGATTAGACCCTACGACGTTAGCGA
ATTGGAATCAGCTGGGTCAT
Yr80 KASP KASP_53113 GAAGGTGACCAAGTTCATGCTTGTACAATGACTCCTCGACTAACA [52]
GAAGGTCGGAGTCAACGGATTTGTACAATGACTCCTCGACTAACG
GCCACGCAATATCACCATCG
Yr81 KASP KASP_3077 GAAGGTGACCAAGTTCATGCTATTCCAAAGTAATTGGCAACAGGTTCA [53]
GAAGGTCGGAGTCAACGGATTCCAAAGTAATTGGCAACAGGTTCG
TGTGGAGCGTGACAATGAGGAAGTT

图1

利用分子标记Y15K1_F2/uhw301R检测部分四川小麦育成品种(系)中Yr15基因 M: Molecular weight marker (1 kb); 1: Yr15/6*AvS; 2: Avocet S; 3: 绵麦835; 4: 西科麦557; 5: 蜀麦1829; 6: 蜀麦1868; 7: 川麦1747; 8: 凡37123; 9: 31966; 10: 绵麦161; 11: 绵麦827; 12: 绵麦906; 13: 西科麦12; 14: 川农27; 15: 川农41; 16: 蜀麦1613; 17: 蜀麦1821; 18: 蜀麦1871; 19: 川麦607; 20: 川麦611; 21: 川麦802; 22: 川麦803。"

表2

78份四川小麦育成品种(系)抗条锈病评价及分子检测结果"

序号
Number
品种
Variety
苗期反应型
Infection type in
seedling stage
成株期2019WJ a
2019WJ a in
adult-plant stage
抗性类型b
Resistance
type b
Yr基因
Yr gene
CYR32 CYR34 IT DS
1 凡37123 Fan 37123 5 7 1 0 APR Yr17+Yr81
2 31966 1 7 1 0 APR Yr17+Yr81
3 绵麦161 Mianmai 161 5 5 1 0 ASR Yr17+Yr26
4 绵麦319 Mianmai 319 5 5 2 5 ASR QYr.nwafu-4BL+Yr17+Yr26+Yr65
5 绵麦827 Mianmai 827 5 5 2 5 ASR Yr26+Yr30+Yr65+Yr78+Yr81
6 绵麦835 Mianmai 835 4 5 0 0 ASR Yr15
7 绵麦902 Mianmai 902 6 6 3 5 ASR Yr17+Yr78+Yr81
8 绵麦903 Mianmai 903 5 5 2 5 ASR Yr17+Yr29+Yr30+Yr78+Yr80
9 绵麦905 Mianmai 905 6 0 1 0 ASR Yr17+Yr28
10 绵麦906 Mianmai 906 2 6 1 0 ASR QYr.nwafu-4BL+Yr17+Yr26+Yr39+Yr80
11 绵麦1419 Mianmai 1419 5 7 1 0 APR Yr26+Yr30+Yr67+Yr78
12 绵麦1501 Mianmai 1501 5 7 3 10 APR Yr17+Yr26+Yr29+Yr78+Yr81
13 绵麦5658 Mianmai 5658 1 7 1 0 APR Yr17+Yr26+Yr30+Yr78+Yr80
14 绵麦5695 Mianmai 5695 1 4 2 5 ASR Yr26+Yr78+Yr81
15 西科麦11 Xikemai 11 5 7 1 0 APR Yr17+Yr26+Yr81
16 西科麦12 Xikemai 12 5 7 1 0 APR Yr29+Yr30
17 西科麦18 Xikemai 18 5 7 1 0 APR
18 西科麦475 Xikemai 475 7 5 2 5 APR Yr17+Yr26+Yr29+Yr30+Yr81
19 西科麦497 Xikemai 497 5 4 2 5 ASR Yr29+Yr78
20 西科麦518 Xikemai 518 7 7 1 0 APR Yr17+Yr29+Yr67
21 西科麦546 Xikemai 546 7 7 2 5 APR Yr17+Yr29+Yr78
22 西科麦557 Xikemai 557 6 0 2 5 ASR Yr15+Yr29
23 川农27 Chuannong 27 7 7 2 5 APR Yr17+Yr39+Yr81
24 川农30 Chuannong 30 5 5 2 5 ASR Yr17+Yr80
25 川农32 Chuannong 32 7 1 2 5 APR Yr17+Yr39+Yr80+Yr81
26 川农38 Chuannong 38 5 7 1 0 APR Yr17+Yr81
27 川农39 Chuannong 39 5 7 1 0 APR Yr17+Yr30+Yr67
28 川农41 Chuannong 41 5 7 1 0 APR Yr17+Yr81
29 川农42 Chuannong 42 7 7 1 0 APR Yr17+Yr81
30 蜀麦691 Shumai 691 8 7 2 5 APR Yr17+Yr29+Yr30+Yr67+Yr81
31 蜀麦1613 Shumai 1613 3 0 3 5 ASR Yr17+Yr29+Yr67
32 蜀麦1671 Shumai 1671 5 7 2 5 APR Yr26+Yr30+Yr65+Yr78
33 蜀麦1675 Shumai 1675 5 7 1 0 APR Yr28+Yr29+Yr30+Yr81
34 蜀麦1743 Shumai 1743 5 5 0 0 ASR Yr17+Yr29
35 蜀麦1783 Shumai 1783 5 1 3 5 ASR Yr17+Yr29+Yr67
36 蜀麦1812 Shumai 1812 7 7 2 5 APR Yr17+Yr81
37 蜀麦1820 Shumai 1820 7 8 4 10 APR Yr17+Yr29+Yr78
38 蜀麦1821 Shumai 1821 7 7 1 0 APR Yr26+Yr30+Yr78
39 蜀麦1829 Shumai 1829 0 1 0 0 ASR Yr15+Yr17
40 蜀麦1843 Shumai 1843 7 6 1 0 APR QYr.nwafu-4BL+Yr17+Yr29
41 蜀麦1862 Shumai 1862 7 7 1 0 APR Yr26+Yr30+Yr65+Yr78
42 蜀麦1868 Shumai 1868 2 0 0 0 ASR Yr15+Yr17+Yr30+Yr41+Yr78
43 蜀麦1871 Shumai 1871 5 5 1 0 ASR Yr17+Yr29+Yr30+Yr67+Yr81
44 蜀麦1885 Shumai 1885 6 5 3 10 ASR Yr17+Yr29+Yr67
45 川麦83 Chuanmai 83 5 0 2 5 ASR Yr17+Yr29
46 川麦84 Chuanmai 84 5 7 2 5 APR QYr.nwafu-4BL+Yr30+Yr65+Yr78
47 川麦86 Chuanmai 86 5 7 1 0 APR Yr26+Yr29+Yr30+Yr78
48 川麦87 Chuanmai 87 7 7 2 5 APR Yr17+Yr30+Yr80+Yr81
49 川麦88 Chuanmai 88 7 7 2 5 APR Yr30
50 川麦93 Chuanmai 93 6 7 3 5 APR Yr26+Yr28+Yr29+Yr30+Yr65+Yr81
51 川麦98 Chuanmai 98 5 5 1 0 ASR Yr17+Yr28+Yr29+Yr81
52 川麦603 Chuanmai 603 4 7 1 0 APR Yr26+Yr29+Yr78
53 川麦604 Chuanmai 604 5 7 1 0 APR Yr17+Yr26+Yr30+Yr65
54 川麦605 Chuanmai 605 0 1 2 5 ASR QYr.nwafu-4BL+Yr26+Yr29+Yr30+Yr65
55 川麦606 Chuanmai 606 5 7 1 0 APR Yr30+Yr78
56 川麦607 Chuanmai 607 7 7 1 0 APR Yr17+Yr26+Yr78
57 川麦608 Chuanmai 608 5 5 1 0 ASR Yr17+Yr26+Yr29+Yr65+Yr78
58 川麦609 Chuanmai 609 5 7 1 0 APR Yr17+Yr26+Yr29+Yr65+Yr78
59 川麦610 Chuanmai 610 1 4 1 0 ASR Yr30+Yr65
60 川麦611 Chuanmai 611 5 0 1 0 ASR Yr29
61 川麦613 Chuanmai 613 2 7 1 5 APR Yr17+Yr29+Yr81
62 川麦801 Chuanmai 801 5 7 1 0 APR Yr17+Yr18+Yr26+Yr30+Yr65+Yr81
63 川麦802 Chuanmai 802 5 5 1 0 ASR Yr17+Yr30+Yr81
64 川麦803 Chuanmai 803 5 7 1 5 APR Yr17+Yr26+Yr30+Yr65+Yr78
65 川麦901 Chuanmai 901 7 7 2 5 APR Yr29+Yr65
66 川麦905 Chuanmai 905 4 5 3 5 ASR Yr26+Yr30+Yr65
67 川麦906 Chuanmai 906 5 5 2 5 ASR Yr26+Yr28+Yr29+Yr30+Yr65+Yr81
68 川麦907 Chuanmai 907 5 5 1 0 ASR Yr30+Yr65
69 川麦1456 Chuanmai 1456 6 5 2 5 ASR Yr18+Yr26+Yr30+Yr41+Yr78
70 川麦1546 Chuanmai 1546 5 5 4 10 ASR Yr30+Yr65
71 川麦1557 Chuanmai 1557 7 7 2 5 APR Yr30+Yr65
72 川麦1580 Chuanmai 1580 5 5 1 0 ASR Yr30+Yr65
73 川麦1603 Chuanmai 1603 5 5 1 0 ASR Yr30+Yr65
74 川麦1648 Chuanmai 1648 5 5 1 0 ASR Yr17+Yr26+Yr30
75 川麦1650 Chuanmai 1650 5 7 1 0 APR Yr17+Yr26+Yr30
76 川麦1694 Chuanmai 1694 7 5 1 0 APR Yr26+Yr30
77 川麦1699 Chuanmai 1699 5 5 2 5 ASR Yr26+Yr30+Yr65
78 川麦1747 Chuanmai 1747 0 0 1 0 ASR Yr15+Yr29+Yr30

图2

利用分子标记Xgwm533分子检测部分四川小麦育成品种(系)中Yr30 基因 M: Molecular olecular weight marker (35~5000 bp); 1: Opata85(Yr30); 2: Avocet S; 3: 绵麦827; 4: 绵麦1419; 5: 西科麦12; 6: 西科麦475; 7: 川农39; 8: 蜀麦1671; 9: 蜀麦1675; 10: 蜀麦1871; 11: 川麦86; 12: 川麦87; 13: 川麦802; 14: 川麦905; 15: 川麦906。"

图3

利用分子标记KASP_53113荧光定量PCR检测部分四川小麦育成品种(系)中Yr80基因 黄色: 携带Yr80的绵麦903、绵麦906、绵麦5658、川农30、川农32和川麦87。蓝色: 未携带Yr80的绵麦319、绵麦835、西科麦12、西科麦518、蜀麦1675和川麦605。绿色: Yr多基因品种(系)绵麦1501、蜀麦1871和川麦906。黑色: 空白对照H2O。"

[1] Wellings C R. Global status of stripe rust: a review of historical and current threats. Euphytica, 2011,179:129-141.
[2] Wan A M, Chen X M, He Z H. Wheat stripe rust in China. Austr J Agric Res, 2007,58:605-619.
[3] 马占鸿. 中国小麦条锈病研究与防控. 植物保护学报, 2018,45(1):1-6.
Ma Z H. Researches and control of wheat stripe rust in China. J Plant Prot, 2018,45(1):1-6 (in Chinese with English abstract)
[4] 邝文静, 张贵胜, 章振羽, 姬红丽, 沈丽, 倪建英, 王宗华, 彭云良. 小麦条锈病菌avrYr10/24/26/ch42突变体的毒性研究. 西南农业学报, 2013,26:2323-2331.
Kuang W J, Zhang G S, Zhang Z Y, Ji H L, Shen L, Ni J Y, Wang Z H, Peng Y L. Studies on virulence of avrYr10/24/26/ch42 mutants of Puccinia striiformis f. sp. tritici. Southwest China J Agric Sci, 2013,26:2323-2331 (in Chinese with English abstract).
[5] 贾秋珍, 黄瑾, 曹世勤, 张勃, 王晓明, 金社林. 感染我国重要小麦抗源材料贵农22的条锈菌新菌系的发现及致病性初步分析. 甘肃农业科技, 2012, ( 1):3-5.
Jia Q Z, Huang J, Cao S Q, Zhang B, Wang X M, Jin S L. Discovery of new stripe rust strain infected to China’s major wheat resistant material Guinong 22 and its preliminary pathogenicity analysis. Gansu Agric Sci Technol, 2012, ( 1):3-5 (in Chinese with English abstract).
[6] 姚革, 蒋滨, 田承权, 夏先全, 蒋凡, 廖华明, 沈丽. 四川省小麦条锈病持续流行原因及防治对策. 西南农业学报, 2004,17:253-256.
Yao G, Jiang B, Tian C Q, Xia X Q, Jiang F, Liao H M, Shen L. Epidemic and control strategies of wheat stripe rust in Sichuan, China. Southwest China J Agric Sci 2004, 17:253-256 (in Chinese with English abstract).
[7] 任勇, 李生荣, 周强, 杜小英, 何员江, 魏育明, 郑有良. 134份四川小麦品种(系)的条锈病抗性评价. 麦类作物学报, 2014,34:847-853.
Ren Y, Li S R, Zhou Q, Du X Y, He Y J, Wei Y M, Zheng Y L. Evaluation of resistance to stripe rust of 134 wheat cultivars and lines from Sichuan province. J Triticeae Crops, 2014,34:847-853 (in Chinese with English abstract).
[8] 李北. 四川盆地条锈菌冬繁区小麦品种(系)抗条锈性评价及基因分析. 西北农林科技大学, 陕西杨凌, 2017. pp 2-7.
Li B. Stripe Rust Resistance and Genes in Wheat Cultivars and Lines from Inoculum Overwintering Region in Sichuan Basin. Northwest A&F University, Yangling, Shanxi, China, 2017. pp 2-7 (in Chinese with English abstract).
[9] 向运佳, 章振羽, 沈丽, 邝文静, 姬红丽, 倪建英, 陈万权, 彭云良. 2005-2010年四川省小麦条锈病菌毒性变化动态. 西南农业学报, 2013,26:1858-1863.
Xiang Y J, Zhang Z Y, Shen L, Kuang W J, Ji H L, Ni J Y, Chen W Q, Peng Y L. Virulence dynamics of Puccinia striiformis f. sp. tritici in Sichuan province from 2005 to 2010. Southwest China J Agric Sci, 2013,26:1858-1863 (in Chinese with English abstract).
[10] 徐志, 王胜, 姬红丽, 倪建英, 尹勇, 沈丽, 彭云良. 四川小麦条锈病菌贵农22致病类群流行对小麦品种抗性的影响. 西南农业学报, 2016,29:2845-2853.
Xu Z, Wang S, Ji H L, Ni J Y, Yin Y, Shen L, Peng Y L. Resistance breakdown of wheat varieties in Sichuan caused by epidemic of Gu-22 virulence group of Puccinia striiformis f. sp. tritici. Southwest China J Agric Sci, 2016,29:2845-2853 (in Chinese with English abstract).
[11] 张顒, 杨武云, 胡晓蓉, 余毅, 邹裕春, 李青茂. 源于硬粒小麦-节节麦人工合成种的高产抗病小麦新品种川麦42主要农艺性状分析. 西南农业学报, 2004,17:141-145.
Zhang Y, Yang W Y, Hu X R, Yu Y, Zou Y C, Li Q M. Analysis of agronomic characters of new wheat variety Chuanmai 42 derived from synthetics ( Triticum durum×Aegilops tauschii). Southwest China J Agric Sci, 2004,17:141-145 (in Chinese with English abstract).
[12] 张颙, 杨武云, 邹裕春. 源于CIMMYT人工合成种的小麦新品种川麦42的选育与研究. 西南农业学报, 2007,20:199-202.
Zhang Y, Yang W Y, Zou Y C. Characterisation of the new wheat cultivar Chuanmai 42 derived from CIMMYT hexaploid wheat. Southwest China J Agric Sci, 2007,20:199-202 (in Chinese with English abstract).
[13] 邹裕春, 张颙, 杨武云, 杨恩年, 黄钢. 四川-CIMMYT小麦穿梭育种回顾与展望. 西南农业学报, 2003,16:102-106.
Zou Y C, Zhang Y, Yang W Y, Yang E N, Huang G. Reviews and prospects of Sichuan-CIMMYT wheat shuttle breeding program. Southwest China J Agric Sci, 2003,16:102-106 (in Chinese with English abstract).
[14] 邹裕春, 杨武云, 朱华忠, 杨恩年, 蒲宗君, 伍铃, 张颙, 汤永禄, 黄钢, 李跃建, 何中虎 , Singh R, Rajaram S. CIMMYT种质及育种技术在四川小麦品种改良中的利用. 西南农业学报, 2007,20:183-190.
Zou Y C, Yang W Y, Zhu H Z, Yang E N, Pu Z J, Wu L, Zhang Y, Tang Y L, Huang G, Li Y J, He Z H, Singh R, Rajaram S. Utilization of CIMMYT germplasm and breeding technologies in wheat improvement in Sichuan, China. Southwest China J Agric Sci, 2007,20:183-190 (in Chinese with English abstract)
[15] 韩烨, 何中虎, 夏先春, 李星, 李在峰, 刘大群. CIMMYT小麦材料的苗期和成株抗叶锈病鉴定. 作物学报, 2011,37:1125-1133.
Han Y, He Z H, Xia X C, Li X, Li Z F, Liu D Q. Seedling and slow rusting resistances to leaf rust in CIMMYT wheat lines. Acta Agron Sin, 2011,37:1125-1133 (in Chinese with English abstract).
[16] Li J B, Dundas I, Dong C M, Li G R, Trethowan R, Yang Z J, Hoxha S, Zhang P. Identification and characterization of a new stripe rust resistance gene Yr83 on rye chromosome 6R in wheat. Theor Appl Genet, 2020,133:1095-1107.
doi: 10.1007/s00122-020-03534-y pmid: 31955232
[17] Ye X L, Li J, Cheng Y K, Yao F J, Long L, Yu C, Wang Y Q, Wu Y, Li J, Wang J R, Jiang Q T, Li W, Ma J, Wei Y M, Zheng Y L, Chen G Y. Genome-wide association study of resistance to stripe rust ( Puccinia striiformis f. sp. tritici) in Sichuan wheat. BMC Plant Biol, 2019,19:147, doi: 10.1186/s12870-019-1764-4.
pmid: 30991940
[18] 周露. 四川小麦地方品种古宋大龙须抗条锈病基因的遗传分析及染色体定位. 四川农业大学硕士学位论文, 四川成都, 2016. pp 21-27.
Zhou L. Genetic Analysis and Chromosomal Location of Yellow Rust Resistance Gene in ‘Gusongdalongxu’ of Sichuan Wheat Landrace. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2016. pp 21-27 (in Chinese with English abstract).
[19] 王健维. 四川小麦地方品种仪陇坨麦抗条锈病基因的遗传分析及其分子标记. 四川农业大学硕士学位论文, 四川成都, 2015. pp 27-34.
Wang J W. Genetics analysis and Molecular Tagging of Stripe Rust Resistance Gene in Sichuan Landrace Wheat Yilongtuomai. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015. pp 27-34 (in Chinese with English abstract).
[20] 刘涛. 四川小麦地方品种合江移栽麦抗条锈病基因的遗传分析及染色体定位. 四川农业大学学位论文, 四川成都, 2015. pp 23-32.
Liu T. Genetic Analysis and Chromosomal Location of Yellow Rust Resistance Gene in Hejiangyizai of Sichuan Wheat Landraces. MS Thesis of Sichuan Agricultural University, Chengdu, Sichuan, China, 2015. pp 23-32 (in Chinese with English abstract).
[21] 王相权, 蒋云, 郑建敏, 黄辉跃, 汪仁全, 王春凤, 杨杰智, 王仕林, 荣飞雪, 王用军, 周海燕, 关淑仙, 陈新媛. 170 份四川省冬小麦品种(系)条锈病抗性鉴定. 湖北农业科学, 2019,58(14):65-69.
Wang X Q, Jiang Y, Zheng J M, Huang H Y, Wang R Q, Wang C F, Yang J Z, Wang S L, Rong F X, Wang Y J, Zhou H Y, Guan S X, Chen X Y. Identification of strip-rust resistance of 170 winter wheat varieties (lines) in Sichuan province. Hubei Agric Sci, 2019,58(14):65-69 (in Chinese with English abstract).
[22] 曹世勤, 孙振宇, 徐志, 王万军, 贾秋珍, 杨随庄, 彭云良, 黄瑾, 张勃. 331份四川小麦品种(系)在甘肃陇南抗条锈性表现及利用价值. 植物保护, 2019,45(1):155-158.
Cao S Q, Sun Z Y, Xu Z, Wang W J, Jia Q Z, Yang S Z, Peng Y L, Huang J, Zhang B. Evaluation resistance of 331 Sichuan wheat cultivars (lines) to stripe rust and their utilization prospect in southern Gansu province. Plant Prot, 2019,45(1):155-158 (in Chinese with English abstract).
[23] Quan W, Hou G L, Chen J, Du Z Y, Lin F, Guo Y, Liu S, Zhang Z J. Mapping of QTL lengthening the latent period of Puccinia striiformis in winter wheat at the tillering growth stage. European J Plant Pathol, 2013,136:715-727.
[24] Liu T G, Peng Y L, Chen W Q, Zhang Z Y. First detection of virulence in Puccinia striiformis f. sp. tritici in China to resistance genes Yr24 (= Yr26) present in wheat cultivar Chuanmai 42. Plant Dis, 2010,94:1163, doi: 10.1094/PDIS-94-9-1163C.
doi: 10.1094/PDIS-94-9-1163A pmid: 30743706
[25] Wu J H, Wang Q L, Chen X M, Wang M J, Mu J M, Lv X N, Huang L L, Han D J, Kang Z S. Stripe rust resistance in wheat breeding lines developed for Central Shaanxi, an overwintering region for Puccinia striiformis f. sp. tritici in China. Can J Plant Pathol, 2016,38:317-324.
[26] 刘博, 刘太国, 章振羽, 贾秋珍, 王保通, 高利, 彭云良, 金社林, 陈万权. 中国小麦条锈菌条中 34 号的发现及其致病特性. 植物病理学报, 2017,47:681-687.
Liu B, Liu T G, Zhang Z Y, Jia Q Z, Wang B T, Gao L, Peng Y L, Jin S L, Chen W Q. Discovery and pathogenicity of CYR34, a new race of Puccinia striiformis f. sp. tritici in China. Acta Phytopath Sin, 2017,47:681-687 (in Chinese with English abstract).
[27] Line R F, Qayoum A. Virulence, aggressiveness, evolution and distribution of races of Puccinia striiformis(the cause of stripe of wheat) in North America 1968-87. Technic Bull, 1992,1788:1-44.
[28] Qayoum A, Line R F. High-temperature, adult plant resistance to stripe rust of wheat. Phytopathology, 1985,75:1121-1125.
[29] 陈国跃, 姚琦馥, 刘亚西, 邓梅, 吴文雄, 何员江, 余马. 四川地方小麦品种条锈病抗性研究. 四川农业大学学报, 2013,31:1-8.
Chen G Y, Yao Q F, Liu Y X, Deng M, Wu W X, Yu M. Studies on yellow rust resistance of Sichuan wheat landraces. J Sichuan Agric Univ, 2013,31:1-8 (in Chinese with English abstract).
[30] Hill-Ambroz K L, Brown-Guedira G L, Fellers J P. Modified rapid DNA extraction protocol for high throughput microsatellite analysis in wheat. Crop Sci, 2002,42:2088-2091.
[31] Wu J H, Huang S, Zeng Q D, Liu S J, Wang Q L, Mu J M, Yu S Z, Han D J, Kang Z S. Comparative genome-wide mapping versus extreme pool-genotyping and development of diagnostic SNP markers linked to QTL for adult plant resistance to stripe rust in common wheat. Theor Appl Genet, 2018,131:1777-1792.
[32] Marchal C, Zhang J P, Zhang P, Fenwick P, Steuemagel B, Adamski N M, Boyd L, Mcintosh R, Wulff B B H, Berry S, Lagudah E, Uauy C. BED-domain-containing immune receptors confer diverse resistance spectra to yellow rust. Nat Plants, 2018,4:662-668.
doi: 10.1038/s41477-018-0236-4 pmid: 30150615
[33] 邵映田, 牛永春, 朱立煌, 翟文学, 徐世昌, 吴立人. 小麦抗条锈病基因Yr10的AFLP标记. 科学通报, 2001,46:669-672.
Shao Y T, Niu Y C, Zhu L H, Zhai W X, Xu S C, Wu L R. AFLP marker of stripe rust resistance gene Yr10 in wheat. Chin Sci Bull, 2001,46:669-672 (in Chinese with English abstract).
[34] Liu W, Frick M, Huel R, Nykiforuk C L, Wang X M, Gaudet D A, Eudes F, Conner R L, Kuzyk A, Chen Q, Kang Z S, Laroche A. The stripe rust resistance gene Yr10 encodes an evolutionary-conserved and unique CC-NBS-LRR sequence in wheat. Mol Plant, 2014,7:1740-1755.
pmid: 25336565
[35] Klymiuk V, Yaniv E, Huang L, Raats D, Fatiukha A, Chen S S, Feng L H, Frenkel Z, Krugman T, Lidzbarsky G, Chang W, Jääskeläinen M J, Schudoma C, Paulin L, Laine P, Bariana H, Sela H, Saleem K, Sørensen C K, Hovmøller M S, Distelfeld A, Chalhoub B, Dubcovsky J, Korol A B, Schulman A H, Fahima T. Cloning of the wheat Yr15 resistance gene sheds light on the plant tandem kinase-pseudokinase family. Nat Commun, 2018,9:178-202.
doi: 10.1038/s41467-017-02599-6 pmid: 29330508
[36] He Y, Feng L H, Jiang Y, Zhang L Q, Yan J, Zhao G, Wang J R, Chen G Y, Wu B H, Liu D C, Huang L, Fahima T. Distribution and nucleotide diversity of Yr15 in wild emmer populations and Chinese wheat germplasm. Pathogens, 2020,9:212, doi: 10.3390/pathogens9030212.
[37] Huang L, Feng L H, He Y, Tang Z Z, He J S, Sela H, Krugman T, Fahima T, Liu D C, Wu B H. Variation in stripe rust resistance and morphological traits in wild emmer wheat populations. Agronomy, 2019,9:44.
[38] 贾举庆, 雷孟平, 刘成, 李光蓉, 杨足君. 小麦抗条锈基因Yr17的新SCAR标记的建立与应用. 麦类作物学报, 2010,30:11-16.
Jia J Q, Lie M P, Liu C, Li G R, Yang Z J. Exploitation and application of a new SCAR marker linked to strip rust resistance gene Yr17 in wheat. J Triticeae Crops, 2010,30:11-16 (in Chinese with English abstract).
[39] Lagudah E S, Krattinger S G, Herrera-Foessel S, Singh R P, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter L L, Keller B. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet, 2009,119:889-898.
doi: 10.1007/s00122-009-1097-z pmid: 19578829
[40] Fang T L, Lei L, Li G Q, Powers C, Hunger R M, Carver B F, Yan L L. Development and deployment of KASP markers for multiple alleles of Lr34 in wheat. Theor Appl Genet, 2020,133:2183-2195.
doi: 10.1007/s00122-020-03589-x pmid: 32281004
[41] Wang C M, Zhang Y P, Han D J, Kang Z S, Li G P, Cao A Z, Chen P D. SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica, 2008,159:359-366.
[42] Zhang C Z, Huang L, Zhang H F, Hao Q Q, Lyu B, Wang M N, Epstein L, Liu M, Kou C L, Qi J, Chen F J, Li M K, Gao G, Ni F, Zhang L Q, Hao M, Wang J R, Chen X M, Luo M C, Zheng Y L, Wu J J, Liu D C, Fu D L. An ancestral NB-LRR with duplicated 3'UTRs confers stripe rust resistance in wheat and barley. Nat Commun, 2019,10:4023.
[43] Ren Y, Singh R P, Basnet B R, Lan C X, Huerta-Espino J, Lagudah E S, Ponce-Molina L J, Lan C X. Identification and mapping of adult plant resistance loci to leaf rust and stripe rust in common wheat cultivar Kundan. Plant Dis, 2017,101:456-463.
doi: 10.1094/PDIS-06-16-0890-RE pmid: 30677352
[44] Hayden M J, Kuchel H, Chalmers K J. Sequence tagged microsatellites for the Xgwm533 locus provide new diagnostic markers to select for the presence of stem rust resistance gene Sr2 in bread wheat(Triticum aestivum L.). Theor Appl Genet, 2004,109:1641-1647.
doi: 10.1007/s00122-004-1787-5 pmid: 15340687
[45] Huang L, Sela H, Feng L H, Chen Q J, Krugman T, Yan J, Dubcovsky J, Fahima T. Distribution and haplotype diversity of WKS resistance genes in wild emmer wheat natural populations. Theor Appl Genet, 2016,129:921-934.
doi: 10.1007/s00122-016-2672-8 pmid: 26847646
[46] Lin F, Chen X M. Genetics and molecular mapping of genes for race-specific all-stage resistance and non-race-specific high-temperature adult-plant resistance to stripe rust in spring wheat cultivar Alpowa. Theor Appl Genet, 2007,114:1277-1287.
doi: 10.1007/s00122-007-0518-0 pmid: 17318493
[47] Luo P G, Hu X Y, Ren Z L, Zhang H Y, Shu K, Yang Z J. Allelic analysis of stripe rust resistance genes on wheat chromosome 2BS. Genome, 2008,51:922-927.
pmid: 18956025
[48] Lowe I, Jankuloski L, Chao S, Chen X M, See D, Dubcovsky J. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet, 2011,123:143-157.
doi: 10.1007/s00122-011-1573-0 pmid: 21455722
[49] Cheng P, Xu S, Wang M N, See D R, Chen X M. Molecular mapping of genes Yr64 and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260 and PI 480016. Theor Appl Genet, 2014,127:2267-2277.
doi: 10.1007/s00122-014-2378-8 pmid: 25142874
[50] Xu H X, Zhang J, Zhang P, Qie Y M, Niu Y C, Li H J, Ma P T, Xu Y F, An D G. Development and validation of molecular markers closely linked to the wheat stripe rust resistance gene YrC591 for marker-assisted selection. Euphytica, 2014,198:317-323.
[51] Dong Z Z, Hegarty J M, Zhang J L, Zhang W J, Chao S, Chen X M, Yonghong Zhou Y H, Dubcovsky J. Validation and characterization of a QTL for adult plant resistance to stripe rust on wheat chromosome arm 6BS (Yr78). Theor Appl Genet, 2017,130:2127-2137.
[52] Nsabiyera V, Bariana H S, Qureshi N, Wong D, Hayden M J, Bansal U K. Characterisation and mapping of adult plant stripe rust resistance in wheat accession Aus27284. Theor Appl Genet, 2018,131:1459-1467.
doi: 10.1007/s00122-018-3090-x pmid: 29560515
[53] Gessese M, Bariana H, Wong D, Hayden M, Bansal U. Molecular mapping of stripe rust resistance gene Yr81 in a common wheat landrace Aus27430. Plant Dis, 2019,103:1166-1171.
doi: 10.1094/PDIS-06-18-1055-RE pmid: 30998448
[54] 郑建敏, 罗江陶, 万洪深, 李式昭, 杨漫宇, 李俊, 杨恩年, 蒋云, 刘于斌, 王相权, 蒲宗君. 四川省小麦育成品种系谱分析及发展进程. 遗传, 2019,41:599-610.
Zheng J M, Luo J T, Wan H S, Li S Z, Yang M Y, Li J, Yang E N, Jiang Y, Liu Y B, Wang X Q, Pu Z J. Pedigree and development of wheat varieties in Sichuan province. Hereditas(Beijing), 2019,41:599-610 (in Chinese with English abstract).
[55] Rabinovich S V. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. Euphytica, 1998,100:323-340.
[56] Chen P, Qi L, Zhou B, Zhang S, Liu D. Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995,91:1125-1128.
doi: 10.1007/BF00223930 pmid: 24170007
[57] Yang W, Liu D, Li J, Zhang L, Wei H, Hu X, Zheng Y, He ZH, Zou Y. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J Genet Genomics, 2009,36:539-546.
doi: 10.1016/S1673-8527(08)60145-9 pmid: 19782955
[58] Chen X M. Epidemiology and control of stripe rust ( Puccinia striiformis f. sp. tritici) on wheat. Can J Plant Pathol, 2005,27, 314-337.
[59] Wan A M, Zhao Z H, Chen X M, He Z H, Jin S L, Jia Q Z, Yao G, Yang J X, Wang B T, Li G B, Bi Y Q, Yuan Z Y. Wheat stripe rust epidemic and virulence of Puccinia striiformis f. sp. tritici in China in 2002. Plant Dis, 2004,88:896-904.
doi: 10.1094/PDIS.2004.88.8.896 pmid: 30812521
[60] Chen W Q, Wu L R, Liu T G, Xu S C, Jin S L, Peng Y L, Wang B T. Race dynamics diversity and virulence evolution in Puccinia striiformis f. sp. tritici the causal agent of wheat stripe rust in China from 2003 to 2007. Plant Dis, 2009,93:1093-1101.
doi: 10.1094/PDIS-93-11-1093 pmid: 30754577
[61] 刘太国, 章振羽, 刘博, 高利, 彭云良, 陈万权. 小麦抗条锈病基因Yr26毒性小种的发现及其对我国小麦主栽品种苗期致病性分析. 植物病理学报, 2015,45:41-47.
Liu T G, Zhang Z Y, Liu B, Gao L, Peng Y L, Chen W Q. Detection of virulence to Yr26 and pathogenicity to Chinese commercial winter wheat cultivars at seedling stage. Acta Phytopathol Sin, 2015,45:41-47 (in Chinese with English abstract).
[62] 朱光, 彭敏, 刘健, 邹贤斌, 汪华, 杨立军, 高春保, 刘易科. 湖北省小麦品种(系)对赤霉病、条锈病、白粉病和纹枯病的抗性评价. 植物保护, 2020,46(3):204-209.
Zhu G, Peng M, Liu J, Zou X B, Wang H, Yang L J, Gao C B, Liu Y K. Evaluation on resistance of wheat varieties (lines) to Fusarium head blight, stripe rust, powdery mildew and sharp eyespot in Hubei province. Plant Prot, 2020,46(3):204-209 (in Chinese with English abstract).
[63] 刘敏捷, 原宗英, 武英鹏. 2015-2018年度山西省小麦区域试验品种及育种材料抗病性评价. 山西农业科学, 2020,48:489-491.
Liu M J, Yuan Z Y, Wu Y P. Resistance evaluation of wheat regional trail varieties and breeding materials in Shanxi province in 2015-2018. J Shanxi Agric Sci, 2020,48:489-491 (in Chinese with English abstract).
[64] 张培禹, 曾庆东, 王琪琳, 康振生, 韩德俊. 四川盆地小麦品种(系)抗条锈性鉴定与评价. 麦类作物学报, 2012,32:779-783.
Zhang P Y, Zeng Q D, Wang Q L, Kang Z S, Han D J. Identification and evaluation of resistance to stripe rust in current wheat cultivars (lines) from Sichuan basin. J Triticeae Crops, 2012,32:779-783 (in Chinese with English abstract).
[65] Huang L, Xiao X Z, Liu B, Gao L, Gong G S, Chen W Q, Zhang M, Liu T G. Identification of stripe rust resistance genes in common wheat cultivars from the Huang-Huai-Hai region of China. Plant Dis, 2020,104:1763-1770.
doi: 10.1094/PDIS-10-19-2119-RE pmid: 32293996
[66] Wang Y, Zhang H Z, Xie J Z, Guo B M, Chen Y X, Zhang H Y, Lu P, Wu Q H, Li M M, Zhang D Y, Guo G H, Yang J, Zhang P P, Zhang Y, Wang X C, Zhao H, Cao T J, Liu Z Y. Mapping stripe rust resistance genes by BSR-Seq: YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17. Crop J, 2018,6:91-98.
[67] 董娜, 胡海燕, 胡铁柱, 李淦, 李小军, 陈向东, 张亚娟, 茹振钢. 348份小麦种质中抗条锈病基因Yr5Yr10Yr18的分子标记检测与分布. 西北农业学报, 2019,28:1960-1968.
Dong N, Hu H Y, Hu T Z, Li G, Li X J, Chen X D, Zhang Y J, Ru Z G. Molecular detection and distribution of stripe rust resistance genes Yr5, Yr10 and Yr18 among 348 wheat germplasms. Acta Agric Boreali-Occident Sin, 2019,28:1960-1968 (in Chinese with English abstract).
[68] Ma J X, Zhou R H, Dong Y S, Wang L F, Wang X M, Jia J Z. Molecular mapping and detection of the yellow rust resistance gene Yr26 in wheat transferred from Triticum turgidum L. using microsatellite markers. Euphytica, 2001,120:219-226.
[69] 吴立人, 牛永春. 我国小麦条锈病持续控制的策略. 中国农业科学, 2000,33(5):1-7.
Wu L R, Niu Y C. Strategies of sustainable control of wheat stripe rust in China. Sci Agric Sin, 2000,33(5):1-7 (in Chinese with English abstract).
[70] 陈万权, 康振生, 马占鸿, 徐世昌, 金社林, 姜玉英. 中国小麦条锈病综合治理理论与实践. 中国农业科学, 2013,46:4254-4262.
Chen W Q, Kang Z S, Ma Z H, Xu S C, Jin S L, Jiang Y Y. Integrated management of wheat stripe rust caused by Puccinia striiformis f. sp. tritici in China. Sci Agric Sin, 2013,46:4254-4262 (in Chinese with English abstract).
[71] 周军, 李魁印, 张立, 彭琴, 徐如宏, 任明见. 242份小麦品种(系)成株期抗条锈病鉴定及分子标记检测. 河南农业科学, 2020,49(6):84-97.
Zhou J, Li K Y, Zhang L, Peng Q, Xu R H, Ren M J. Identification of adult-plant resistance to stripe rust and molecular marker detection of Yr gene in 242 wheat varieties (lines). J Henan Agric Sci, 2020,49(6):84-97 (in Chinese with English abstract).
[72] 蔚睿, 金彦刚, 吴舒舒, 吴建辉, 王琪琳, 曾庆东, 刘胜杰, 夏中华, 王晓静, 康振生, 韩德俊. 黄淮麦区小麦新品种(系)抗条锈水平与抗病基因分析. 麦类作物学报, 2020,40:278-284.
Wei R, Jin Y G, Wu S S, Wu J H, Wang Q L, Zeng Q D, Liu S J, Xia Z H, Wang X J, Kang Z S, Han D J. Stripe rust resistance of new varieties(lines) from Huang-Huai valley wheat region in China. J Triticeae Crops, 2020,40:278-284 (in Chinese with English abstract).
[73] Liu R, Lu J, Zhou M, Zheng S G, Liu Z H, Zhang C H, Du M, Wang M X, Li Y F, Wu Y, Zhang L. Developing stripe rust resistant wheat ( Triticum aestivum L.) lines with gene pyramiding strategy and marker-assisted selection. Genet Resour Crop Evol, 2020,67:381-391.
[1] 赵旭阳, 姚方杰, 龙黎, 王昱琦, 康厚扬, 蒋云峰, 李伟, 邓梅, 李豪, 陈国跃. 青藏春冬麦区93份小麦地方种质条锈病抗性评价及抗病基因分子鉴定[J]. 作物学报, 2021, 47(10): 2053-2063.
[2] 白宗璠,竞霞,张腾,董莹莹. MDBPSO算法优化的全波段光谱数据协同冠层SIF监测小麦条锈病[J]. 作物学报, 2020, 46(8): 1248-1257.
[3] 张安宁,刘毅,王飞名,谢岳文,孔德艳,聂元元,张分云,毕俊国,余新桥,刘国兰,罗利军. 节水抗旱稻恢复系的抗褐飞虱分子标记辅助选育及抗性评价[J]. 作物学报, 2019, 45(11): 1764-1769.
[4] 肖明纲, 宋凤景, 孙兵, 左辛, 赵广山, 辛爱华, 李柱刚. 玉米大斑病广谱抗性外引自交系的发掘与抗病基因初步鉴定[J]. 作物学报, 2018, 44(04): 614-619.
[5] 毛彦芝,李春杰,胡岩峰,华萃,尤佳,王鑫鹏,刘喜才,杨耿斌,王从丽. 评价黑龙江省主栽马铃薯品种及重要育种材料对北方根结线虫的抗性[J]. 作物学报, 2017, 43(12): 1864-1869.
[6] 李文凤,王晓燕,黄应昆*,张荣跃,单红丽,罗志明,尹炯. 101份中国甘蔗主要育种亲本褐锈病抗性鉴定及Bru1基因的分子检测[J]. 作物学报, 2016, 42(09): 1411-1416.
[7] 李文凤,王晓燕,黄应昆*,张荣跃,单红丽,尹炯,罗志明. 31份甘蔗野生核心种质资源褐锈病抗性鉴定及Bru1基因的分子检测[J]. 作物学报, 2015, 41(05): 806-812.
[8] 邢小萍,袁虹霞,孙君伟,张洁,孙炳剑,李洪连. 河南省小麦主推品种对两种禾谷孢囊线虫的抗性及其评价方法[J]. 作物学报, 2014, 40(05): 805-815.
[9] 李爱宏,潘存红,戴正元,肖宁,余玲,李育红,张小祥,张洪熙,潘学彪. 以标记辅助选择改良江苏主栽粳稻品种“淮稻5号”黑条矮缩病抗性[J]. 作物学报, 2012, 38(10): 1775-1781.
[10] 党良,王爱云,徐惠君,祝秀亮,杜丽璞,邵艳军,张增艳. 抗根腐病的转GmPGIP3基因小麦扬麦18的获得与鉴定[J]. 作物学报, 2012, 38(10): 1833-1838.
[11] 马东方, 王海鸽, 唐明双, 袁喜丽, 白耀博, 周新力, 宋建荣, 井金学. 小麦品种中梁21抗条锈病基因遗传分析与SSR标记定位[J]. 作物学报, 2011, 37(12): 2145-2151.
[12] 曹世勤, 张勃, 李明菊, 徐世昌, 骆惠生, 金社林, 贾秋珍, 黄瑾, 金明安, 尚勋武. 甘肃省50个主要小麦品种(系)苗期抗条锈基因推导及成株期抗病性分析[J]. 作物学报, 2011, 37(08): 1360-1371.
[13] 刘新颖,王晓杰,薛杰,夏宁,邓麟,蔡高磊,汤春蕾,魏国荣,黄丽丽,康振生. 小麦钙调素新亚型TaCaM5的克隆及表达分析[J]. 作物学报, 2010, 36(06): 953-960.
[14] 杨敏娜;徐智斌;王美南;宋建荣;井金学;李振岐. 小麦品种中梁22抗条锈病基因的遗传分析和分子作图[J]. 作物学报, 2008, 34(07): 1280-1284.
[15] 陈杰;张佳星;叶兴国;何聪芬;董银卯;赵华;秦允荣. 农杆菌介导法将海藻糖合成酶基因转入芦荟的研究[J]. 作物学报, 2007, 33(06): 968-972.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!