作物学报 ›› 2021, Vol. 47 ›› Issue (7): 1297-1308.doi: 10.3724/SP.J.1006.2021.04180
宋天晓1,2, 刘意2,3, 饶莉萍2,3, Soviguidi Deka Reine Judesse2,3, 朱国鹏1,*(), 杨新笋2,*()
SONG Tian-Xiao1,2, LIU Yi2,3, RAO Li-Ping2,3, Soviguidi Deka Reine Judesse2,3, ZHU Guo-Peng1,*(), YANG Xin-Sun2,*()
摘要:
甘薯是重要的粮食、饲料、工业原料作物和新型的生物能源作物, 细胞壁蔗糖转化酶是植物源、库组织蔗糖代谢的关键酶, 但关于甘薯细胞壁蔗糖转化酶基因IbCWIN家族成员的研究尚未见报道。本研究测定供试品种不同组织部位的蔗糖淀粉含量, 利用生物信息学方法对IbCWIN基因家族的理化性质、保守结构域、系统进化关系、启动子作用元件、组织特异性表达模式进行分析。结果表明, 甘薯茎中蔗糖含量最高, 须根和叶次之, 块根最低; 块根淀粉含量最高, 极显著高于其他部位。甘薯中含有10个IbCWIN基因, 编码氨基酸442~1115个, 蛋白质分子量范围49.56~124.44 kD, 等电点为5.0~9.1。分布在8条染色体上, 都含有Glyco_32保守结构域及相同或相似的保守基序motif, 属于糖基水解酶基因家族GH32。IbCWIN与木薯MeCWINV同源性高, IbCWIN基因家族启动子区域含有多种类型的顺式作用元件。qRT-PCR结果表明, IbCWIN基因家族在甘薯不同组织中均有表达且有多种表达模式, 其中IbCWIN2和IbCWIN9在块根中表达量显著高于其他组织部位。本研究为下一步探索甘薯IbCWIN基因家族的功能及调控甘薯源、库关系机制提供理论指导。
[1] | 张立明, 王庆美, 王荫墀. 甘薯的主要营养成分和保健作用. 杂粮作物, 2003,23(3):162-166. |
Zhang L M, Wang Q M, Wang Y C. Main nutritional components of Ipomoea batatas and its healthy functions. Rain Fed Crops, 2003,23(3):162-166 (in Chinese). | |
[2] | 刘庆昌. 甘薯在我国粮食和能源安全中的重要作用. 科技导报, 2004,22(9):21-22. |
Liu Q C. Importance of sweet potato in the security of food and energy in China. Sci Technol Rev, 2004,22(9):21-22 (in Chinese with English abstract). | |
[3] | 马剑凤, 程金花, 汪洁, 戴红君, 戴起伟. 国内外甘薯产业发展概况. 江苏农业科学, 2012,40(12):1-5. |
Ma J F, Cheng J H, Wang J, Dai H J, Dai Q W. General situation of development of sweet potato industry at home and abroad. Jiangsu Agric Sci, 2012,40(12):1-5 (in Chinese with English abstract). | |
[4] |
Qin G, Zhu Z, Wang W, Cai J, Chen Y, Li L, Shi P T. A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening. Plant Physiol, 2016,172:1596-1611.
doi: 10.1104/pp.16.01269 pmid: 27694342 |
[5] |
Goetz M, Guivarch A, Hirsche J, Bauerfeind M A, Gonzalez M C, Hyun T K, Eom S H, Chriqui D, Engelke T, Großkinsky D K, Roitsch T. Metabolic control of tobacco pollination by sugars and invertases. Plant Physiol, 2017,173:984-997.
doi: 10.1104/pp.16.01601 pmid: 27923989 |
[6] |
Rende U, Wang W, Gandla M L, Jonsson L J, Niittyla T. Cytosolic invertase contributes to the supply of substrate for cellulose biosynthesis in developing wood. New Phytol, 2017,214:796-807.
doi: 10.1111/nph.14392 pmid: 28032636 |
[7] | 俞锞. 蔗糖转化酶基因调控番茄果实耐热性的初步分析. 浙江师范大学硕士学位论文, 浙江金华, 2014. |
Yu K. The Preliminary Analysis of Invertase Gene Regulating the Heat Tolerance of Tomato Fruit. MS Thesis of Zhejiang Normal University, Jinhua, Zhejiang, China, 2014 (in Chinese with English abstract). | |
[8] | 刘永忠, 李道高. 柑橘果实糖积累与蔗糖代谢酶活性的研究. 园艺学报, 2003,30:457-459. |
Liu Y Z, Li D G. Study on sugar accumulation and sucrose metabolizing enzyme activity in citrus fruit. Acta Hortic Sin, 2003,30:457-459 (in Chinese with English abstract). | |
[9] |
Sturm A. Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci, 1999,4:401-407.
pmid: 10498964 |
[10] |
Sturm A. Invertase, primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiol, 1999,121:1-7.
doi: 10.1104/pp.121.1.1 pmid: 10482654 |
[11] |
Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol, 2004,7:235-246.
doi: 10.1016/j.pbi.2004.03.014 pmid: 15134743 |
[12] |
Tang G Q, Luscher M, Sturm A. Antisense repression of vacuolar and cell wall invertase in transgenic carrot alters early plant development and sucrose partitioning. Plant Cell, 1999,11:177-189.
doi: 10.1105/tpc.11.2.177 pmid: 9927637 |
[13] |
Jin Y, Ni D A, Ruan Y L. Posttranslational elevation of cell wall invertase activity by silencing its inhibitor in tomato delays leaf senescence and increases seed weight and fruit hexose level. Plant Cell, 2009,21:2072-2089.
doi: 10.1105/tpc.108.063719 pmid: 19574437 |
[14] |
Zanor M I, Osorio S, Nunes N A, Carrari F, Lohse M, Usadel B, Kuhn C, Bleiss W, Giavalisco P, Willmitzer L, Sulpice R, Zhou Y H, Fernie A R. RNA interference of LIN5 in Solanum lycopersicum confirms its role in controlling brix content, uncovers the influence of sugars on the levels of fruit hormones and demonstrates the importance of sucrose cleavage for normal fruit development and fertility. Plant Physiol, 2009,150:1204-1218.
doi: 10.1104/pp.109.136598 pmid: 19439574 |
[15] |
Roy K L, Vergauwen R, Struyf T, Yuan S G, Lammens W, Matrai J, Maeyer M D, Ende W V D. Understanding the role of defective invertases in plants: tobacco Nin88 fails to degrade sucrose. Plant Physiol, 2013,161:1670-1681.
pmid: 23447526 |
[16] | Deryabin A N, Burakhanova E A, Trunova T I. Apoplastic sugars and cell-wall invertase are involved in formation of the tolerance of cold-resistant potato plants to hypothermia. Doklady Biochem Biophys, 2015,465:366-369. |
[17] | 牛俊奇, 苗小荣, 王露蓉, 杨丽涛, 李杨瑞. 甘蔗细胞壁转化酶基因(SoCIN1)克隆及其在转基因烟草中的表达特性分析. 南方农业学报, 2017,48:1727-1733. |
Niu J Q, Miao X R, Wang L R, Yang L T, Li Y R. Cloning of cell wall invertase gene ( SoCIN1) in sugarcane and its expression characteristics in transgenic tobacco. J Southern Agric, 2017,48:1727-1733 (in Chinese with English abstract). | |
[18] |
Yuan Y, Geng M T, Wu X H, Liu J, Li R M, Hu X W, Guo J C. Genome-wide identification, 3D modeling, expression and enzymatic activity analysis of cell wall invertase gene family from cassava (Manihot esculenta Crantz). Int J Mol Sci, 2014,15:7313-7331.
doi: 10.3390/ijms15057313 pmid: 24786092 |
[19] |
Cho J I, Lee S K, Ko S, Kim H K, Jun S H, Lee Y H, Bhoo S H, Lee K W, An G, Hahn T R, Jeon J S. Molecular cloning and expression analysis of the cell-wall invertase gene family in rice ( Oryza sativa L.). Plant Cell Rep, 2005,24:225.
doi: 10.1007/s00299-004-0910-z pmid: 15759120 |
[20] |
Liu X, Zhang C, Ou Y, Lin Y, Song B, Xie C H, Liu J, Li X Q. Systematic analysis of potato acid invertase genes reveals that a cold-responsive member StvacINV1, regulates cold-induced sweetening of tubers. Mol Genet Genomics, 2011,286:109-118.
pmid: 21691778 |
[21] |
Chen Z, Gao K, Su X X, Rao P, An X M. Genome-wide identification of the invertase gene family in populus. PLoS One, 2015,10:e0138540.
doi: 10.1371/journal.pone.0138540 pmid: 26393355 |
[22] | 严丹凤, 吴晓慧, 耿梦婷, 范洁, 姚远, 李瑞梅, 郭建春. 番木瓜酸性转化酶基因家族预测及生物信息学初步分析. 基因组学与应用生物学, 2014,33:374-381. |
Yan D F, Wu X H, Geng M T, Fan J, Yao Y, Li R M, Guo J C. Gene family prediction and preliminary analysis of bioinformatics of acid invertase in Carica papaya. Genomics Appl Biol, 2014,33:374-381 (in Chinese with English abstract). | |
[23] | Wu L J, Huang W C, Sung H Y. Partial purification and characterization of soluble acid invertase from sweet potato suspension cells. Food Sci Agric Chem, 2000,2:49-54. |
[24] |
Wang L T, Wang A Y, Hsieh C W, Chen C Y, Sung H Y. Vacuolar invertases in sweet potato: molecular cloning, characterization, and analysis of gene expression. J Agric Food Chem, 2005,53:3672-3678.
doi: 10.1021/jf0480851 pmid: 15853418 |
[25] | 苏宁. 拟南芥蔗糖转化酶基因AtCWINV4的功能研究及对油菜的遗传转化. 华中师范大学硕士学位论文,湖北武汉, 2013. |
Su N. Arabidopsis thaliana Cell Wall Invertase AtCWINV4 Function Research and Genetic Transformation of Brassica napus. MS Thesis of Central China Normal University, Wuhan, Hubei, China, 2013 (in Chinese with English abstract). | |
[26] | 刘勋. 马铃薯转化酶及其抑制子基因家族分析及与低温糖化关系研究. 华中农业大学博士学位论文, 湖北武汉, 2010. |
Liu X. Analysis of Potato Acid Invertase and Invertase Inhibitor Gene Families and Their Relationship with Cold-induced Sweetening of Tubers. PhD Dissertation of Hua Zhong Agricultural University, Wuhan, Hubei, China, 2010 (in Chinese with English abstract). | |
[27] | 何照范. 粮油籽粒品质及其分析技术. 北京: 农业出版社. 1985. pp 148-150. |
He Z F. Quality of Grain and Oil Analytical Techniques. Beijing: Agricultural Press, 1985. pp 148-150(in Chinese). | |
[28] | 汤章城. 现代植物生理学实验指南. 北京: 科学出版社, 1999. p 131. |
Tang Z C. Modern Laboratory Manual of Plant Physiology. Beijing: Science Press, 1999. p 131 (in Chinese). | |
[29] | 周喆, 张彩霞, 张利义, 王强, 李武兴, 田义, 丛佩华. 苹果LysM基因家族的生物信息学及表达分析. 中国农业科学, 2014,47:2602-2612. |
Zhou Z, Zhang C X, Zhang L Y, Wang Q, Li W X, Tian Y, Cong P H. Bioinformatics and expression analysis of the LysM gene family in apple. Sci Agric Sin, 2014,47:2602-2612 (in Chinese with English abstract). | |
[30] | 石晓雯, 贺立恒, 焦晋华, 刘霞宇, 王婷, 刘世芳, 贾小云, 李润植. 甘薯二倍体近缘野生种三裂叶薯MYB转录因子全基因组分析及逆境胁迫响应. 核农学报, 2018,32:1338-1348. |
Shi X W, He L H, Jiao J H, Liu X Y, Wang T, Liu S F, Jia X Y, Li R Z. Sweet potato diploid, wild relatives, trilobate leaf potato MYB transcription factor full genome analysis and stress response. J Nucl Agric Sci, 2018,32:1338-1348 (in Chinese). | |
[31] |
Yang J, Moeinzadeh M, Kuhl H, Helmuth J, Xiao P, Haas S, Liu G, Zheng J L, Sun Z, Fan W J, Deng G F, Wang H X, Hu F H, Zhao S S, Fernie A R, Boerno S F, Timmermann B, Zhang P, Vingron M. Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants, 2017,3:696-703.
doi: 10.1038/s41477-017-0002-z pmid: 28827752 |
[32] | 张莉, 荐红举, 杨博, 张翱翔, 张超, 杨鸿, 张立源, 刘列钊, 徐新福, 卢坤, 李加纳. 甘蓝型油菜蔗糖磷酸合酶(SPS)基因家族成员鉴定及表达分析. 作物学报, 2018,44:197-207. |
Zhang L, Jian H J, Yang B, Zhang A X, Zhang C, Yang H, Zhang L Y, Liu L Z, Xu X F, Lu K, Li J N. Genome-wide analysis and expression profiling of SPS gene family in Brassica nupus L. Acta Agron Sin, 2018,44:197-207 (in Chinese with English abstract). | |
[33] | 庞文玉, 王安, 杨宝谊, 刘振宁. 大白菜ENT基因家族的鉴定与生物信息学分析. 江苏农业科学, 2019,47(12):52-57. |
Pang W Y, Wang A, Yang B Y, Liu Z N. Identification and bioinformatics analysis of Chinese cabbage ENT gene family. Jiangsu Agric Sci, 2019,47(12):52-57 (in Chinese). | |
[34] | 王影, 李慧, 蔺经, 杨青松, 张绍铃, 常有宏. 杜梨NHX基因家族的鉴定及其在非生物胁迫下的表达分析. 果树学报, 2019,36:825-836. |
Wang Y, Li H, Lan J, Yang Q S, Zhang X L, Chang Y H. Identification of NHX gene family in Pyrus betulaefolia Bunge and its expression under abiotic stress. J Fruit Sci, 2019,36:825-836 (in Chinese with English abstract). | |
[35] |
Roitsch T, Bittner M, Godt D E. Induction of apoplastic invertase of Chenopodium rubrum by D-glucose and a glucose analogue and tissue-specific expression suggest a role in sinksource regulation. Plant Physiol, 1995,108:285-294.
doi: 10.1104/pp.108.1.285 pmid: 7784506 |
[36] | 李淑君. 玉米细胞壁转化酶基因Incw2在玉米籽粒中的过量表达. 四川农业大学硕士学位论文, 四川雅安, 2011. |
Li S J. Overexpression of Incw2 Gene Maize Cell Wall Invertase in Maize Kernels. MS Thesis of Sichuan Agricultural University, Ya’an, Sichuan, China, 2011 (in Chinese with English abstract). | |
[37] | 魏华伟, 柴松琳, 胡克玲, 侯金锋, 高朋, 高优洋, 陈友根. 辣椒酸性蔗糖转化酶基因家族鉴定及表达. 分子植物育种, 2019,17:4900-4907. |
Wei H W, Chai S L, Hu K L, Hou J F, Gao P, Gao Y Y, Chen Y G. Genome identification and expression of acid invertase gene in pepper. Mol Plant Breed, 2019,17:4900-4907 (in Chinese with English abstract). | |
[38] | 潘坤, 王海燕, 卢诚, 周新成, 陈新, 王文泉. 实时荧光定量PCR检测木薯转化酶和蔗糖合酶的mRNA表达量. 分子植物育种, 2016,14:1788-1794. |
Pan K, Wang H Y, Lu C, Zhou X C, Chen X, Wang W Q. Detection of mRNA expression of cassava acid invertases and sucrose synthase by fluorescent quantitative real-time PCR. Mol Plant Breed, 2016,14:1788-1794 (in Chinese with English abstract). | |
[39] |
Liu J, Chen X, Wang S, Wang Y Y, Ou-Yang Y J, Yao Y, Li R M, Fu S P, Hu X W, Guo J C. MeABL5, an ABA insensitive 5-like basic leucine zipper transcription factor, positively regulates MeCWINV3 in cassava(Manihot esculenta Crantz). Front Plant Sci, 2019,10:772.
doi: 10.3389/fpls.2019.00772 pmid: 31316528 |
[40] | 胡艳平. 木薯细胞壁酸性转化酶基因MeCWINV1启动子的克隆与功能分析. 海南大学硕士学位论文, 海南海口, 2014. |
Hu Y P. Isolation and Functional Characterization of MeCWINV1 Promoter from Manihot esculenta Crantz. MS Thesis of Hainan University, Haikou, Hainan, China, 2014 (in Chinese with English abstract). | |
[41] |
Wei Y, Wu X Y, Li Y N, Liu G H, Cui Z F, Jiang T L, Ma Q X, Luo L J, Zhang P. Cell wall invertase 3 affects cassava productivity via regulating sugar allocation from source to sink. Front Plant Sci, 2019,10:541.
doi: 10.3389/fpls.2019.00541 pmid: 31114601 |
[42] | 郭育强, 刘姣, 符少萍, 段瑞军, 李瑞梅, 姚远, 胡新文, 郭建春. MeCWINV6酵母单杂交文库构建及其调控基因筛选. 分子植物育种, 2016,14:2777-2784. |
Guo Y Q, Liu J, Fu S P, Duan R J, Li R M, Yao Y, Hu X W, Guo J C. Constructing yeast one-hybrid library and screening the potential regulator of MeCWINV6 in cassava. Mol Plant Breed, 2016,14:2777-2784 (in Chinese with English abstract). |
[1] | 陈松余, 丁一娟, 孙峻溟, 黄登文, 杨楠, 代雨涵, 万华方, 钱伟. 甘蓝型油菜BnCNGC基因家族鉴定及其在核盘菌侵染和PEG处理下的表达特性分析[J]. 作物学报, 2022, 48(6): 1357-1371. |
[2] | 李海芬, 魏浩, 温世杰, 鲁清, 刘浩, 李少雄, 洪彦彬, 陈小平, 梁炫强. 花生电压依赖性阴离子通道基因(AhVDAC)的克隆及在果针向地性反应中表达分析[J]. 作物学报, 2022, 48(6): 1558-1565. |
[3] | 姚晓华, 王越, 姚有华, 安立昆, 王燕, 吴昆仑. 青稞新基因HvMEL1 AGO的克隆和条纹病胁迫下的表达[J]. 作物学报, 2022, 48(5): 1181-1190. |
[4] | 靳容, 蒋薇, 刘明, 赵鹏, 张强强, 李铁鑫, 王丹凤, 范文静, 张爱君, 唐忠厚. 甘薯Dof基因家族挖掘及表达分析[J]. 作物学报, 2022, 48(3): 608-623. |
[5] | 渠建洲, 冯文豪, 张兴华, 徐淑兔, 薛吉全. 基于全基因组关联分析解析玉米籽粒大小的遗传结构[J]. 作物学报, 2022, 48(2): 304-319. |
[6] | 董衍坤, 黄定全, 高震, 陈栩. 大豆PIN-Like (PILS)基因家族的鉴定、表达分析及在根瘤共生固氮过程中的功能[J]. 作物学报, 2022, 48(2): 353-366. |
[7] | 陈新宜, 宋宇航, 张孟寒, 李小艳, 李华, 汪月霞, 齐学礼. 干旱对不同品种小麦幼苗的生理生化胁迫以及外源5-氨基乙酰丙酸的缓解作用[J]. 作物学报, 2022, 48(2): 478-487. |
[8] | 张海燕, 解备涛, 姜常松, 冯向阳, 张巧, 董顺旭, 汪宝卿, 张立明, 秦桢, 段文学. 不同抗旱性甘薯品种叶片生理性状差异及抗旱指标筛选[J]. 作物学报, 2022, 48(2): 518-528. |
[9] | 王艳朋, 凌磊, 张文睿, 王丹, 郭长虹. 小麦B-box基因家族全基因组鉴定与表达分析[J]. 作物学报, 2021, 47(8): 1437-1449. |
[10] | 张思梦, 倪文荣, 吕尊富, 林燕, 林力卓, 钟子毓, 崔鹏, 陆国权. 影响甘薯收获期软腐病发生的指标筛选[J]. 作物学报, 2021, 47(8): 1450-1459. |
[11] | 黄宁, 惠乾龙, 方振名, 李姗姗, 凌辉, 阙友雄, 袁照年. 甘蔗β-胡萝卜素异构酶基因家族的鉴定、定位和表达分析[J]. 作物学报, 2021, 47(5): 882-893. |
[12] | 秦天元, 刘玉汇, 孙超, 毕真真, 李安一, 许德蓉, 王一好, 张俊莲, 白江平. 马铃薯StIgt基因家族的鉴定及其对干旱胁迫的响应分析[J]. 作物学报, 2021, 47(4): 780-786. |
[13] | 王翠娟, 柴沙沙, 史春余, 朱红, 谭中鹏, 季杰, 任国博. 铵态氮素促进甘薯块根形成的解剖特征及其IbEXP1基因的表达[J]. 作物学报, 2021, 47(2): 305-319. |
[14] | 解盼, 刘蔚, 康郁, 华玮, 钱论文, 官春云, 何昕. 甘蓝型油菜CBF基因家族的鉴定和表达分析[J]. 作物学报, 2021, 47(12): 2394-2406. |
[15] | 马猛, 闫会, 高闰飞, 后猛, 唐维, 王欣, 张允刚, 李强. 紫甘薯SSR标记遗传图谱构建与重要农艺性状QTL定位[J]. 作物学报, 2021, 47(11): 2147-2162. |
|