欢迎访问作物学报,今天是

作物学报 ›› 2021, Vol. 47 ›› Issue (7): 1324-1331.doi: 10.3724/SP.J.1006.2021.03045

• 耕作栽培·生理生化 • 上一篇    下一篇

不同时期灌溉对华北平原春玉米穗粒数的影响

高震1,2, 梁效贵2, 张莉2, 赵雪2, 杜雄1, 崔彦宏1, 周顺利2,3,4,*()   

  1. 1河北农业大学农学院 / 省部共建华北作物改良与调控国家重点实验室 / 河北省作物生长调控实验室, 河北保定 071001
    2中国农业大学农学院, 北京 100193
    3农业农村部作物高效用水吴桥科学观测实验站, 河北吴桥 061802
    4河北省低平原区农业技术创新中心, 河北吴桥 061802
  • 收稿日期:2020-07-24 接受日期:2020-12-01 出版日期:2021-07-12 网络出版日期:2020-12-29
  • 通讯作者: 周顺利
  • 作者简介:E-mail: gaozhenvision@163.com
  • 基金资助:
    本研究由粮食丰产增效科技创新重点专项(2016YFD0300301), 国家现代农业产业技术体系建设专项(CARS-02-13), 河北农业大学引进人才专项(YJ201827)和河北农业大学科研发展计划项目(YJ2019006)资助

Effects of irrigating at different growth stages on kernel number of spring maize in the North China Plain

GAO Zhen1,2, LIANG Xiao-Gui2, ZHANG Li2, ZHAO Xue2, DU Xiong1, CUI Yan-Hong1, ZHOU Shun-Li2,3,4,*()   

  1. 1College of Agronomy, Hebei Agricultural University / State Key Laboratory of North China Crop Improvement and Regulation / Key Laboratory of Crop Growth Regulation of Hebei Province, Baoding 071001, Hebei, China
    2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
    3Scientific Observing and Experimental Station of Crop High Efficient Use of Water in Wuqiao, the Ministry of Agriculture and Rural Affairs, Wuqiao 061802, Hebei, China
    4Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao 061802, Hebei, China
  • Received:2020-07-24 Accepted:2020-12-01 Published:2021-07-12 Published online:2020-12-29
  • Contact: ZHOU Shun-Li
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2016YFD0300301), the China Agriculture Research System (CARS-02-13), the Startup Fund from Hebei Agricultural University (YJ201827), and the Research Development Fund of Hebei Agricultural University (YJ2019006).

摘要:

干旱胁迫是限制华北地区春玉米穗粒数形成的关键因子, 探究不同时期灌溉对穗粒数的影响, 对提高该地区春玉米产量和水分利用效率具有重要意义。在2014—2016年进行3年大田试验, 设置拔节期、大口期、抽雄期、吐丝后15 d灌水和不灌水对照(CK), 明确不同时期灌水对土壤水分变化、吐丝期穗位叶光合速率、穗粒数的影响及其相互关系。结果表明, 在干旱和关键生育时期缺水的年份, 灌水处理可以提高春玉米穗粒数, 其中花期灌水较其他处理提高了1.4%~97.0% (2014年和2015年); 而在多雨的2016年, 各个灌水处理间穗粒数差异不显著。拔节期和大口期灌水促进了春玉米营养生长, 提高了叶面积指数和生物量, 但春玉米花期遭遇干旱胁迫仍会降低穗粒数。花期灌水处理在营养生长阶段受干旱胁迫影响, 叶面积指数和生物量都降低, 但保证了吐丝—授粉—籽粒建成关键阶段有充足的水分供应, 其吐丝期光合速率较其他处理提高5.2%~32.8%。回归分析结果表明, 吐丝期充足的土壤水含量可以显著提高春玉米光合速率(P = 0.0034)和穗粒数(P = 0.0137), 但过多降水(降低光辐射)会影响光合作用及籽粒结实。因此, 花期灌水是干旱年份保证春玉米穗粒数的重要措施。

关键词: 春玉米, 穗粒数, 光合速率, 土壤含水量, 回归分析

Abstract:

Drought stress is the main limiting factor for kernel setting of spring maize in the North China plain (NCP). It is important to investigate the effects of irrigation at different growth stages on kernel number, which contributes much to improve grain yield and water use efficiency of spring maize in the NCP. A three-year field experiment was conducted from 2014 to 2016. Irrigating at V6, V12, tasseling, 15 days after silking stage, and rain-fed treatments were set to evaluate the soil water change, ear leaf photosynthesis rate, kernel number per ear and their relationships. The results indicated that irrigating could increase kernel number in dry years, and irrigating at tasseling stage increased kernel number by 1.4%-97.0% compared with other treatments in 2015 and 2016. However, there were no significant differences among each treatment in kernel number in the rainy year of 2016. Irrigating at V6 and V12 stage increased vegetative growth of spring maize, including leaf area and biomass, whereas drought stress occurring at flowering stage still reduced kernel number. In irrigating treatment at tasseling stage, vegetative growth would be inhibited by drought, thus lowing leaf area index and biomass, but ensuring water availability during silking-pollination-kernel growth stage. Moreover, irrigating at tasseling stage increased photosynthesis rate (Pn) by 5.2%-32.8% than other treatments. Regression analysis suggested that high water availability could significantly increase Pn (P = 0.0034) and kernel number (P = 0.0137), but excess rainfall (low solar radiation) had adverse effect on kernel setting. Overall, irrigating at tasseling stage in dry years was a critical management to ensure kernel number of spring maize.

Key words: spring maize, kernel number per ear, photosynthesis rate, soil water content, regression analysis

图1

2014-2016年春玉米生育期降水及温度分布 图中箭头指示吐丝期; V6、V12、R1、R6分别为拔节期、大口期、吐丝期、成熟期。"

图2

不同时期灌水处理对春玉米各个时期土壤含水量(g g-1)的影响 VS、V6、V12、R1、R6分别代表播种期、拔节期、大口期、吐丝期和成熟期; A~D为2014年, E~I为2015年, J~N为2016年; A、E、J: CK处理; B、F、K: IV6处理; G、L: IV12处理; C、H、M: IS处理; D、I、N: IS15处理。"

图3

不同时期灌水处理对春玉米穗粒数的影响 图中白色圆点为平均值; 不同字母代表处理间差异显著(P < 0.05); CK、IV6、IV12、IS、IS15分别代表不灌水对照、拔节期、大口期、吐丝期和吐丝后15 d灌水处理。"

图4

不同时期灌水处理对春玉米生物量的影响 图中不同字母代表处理间差异显著(P < 0.05); V12、R1、R6分别代表大口期、吐丝期、成熟期; CK、IV6、IV12、IS、IS15分别代表不灌水对照、拔节期、大口期、吐丝期和吐丝后15 d灌水处理。"

图5

不同时期灌水处理对吐丝期春玉米穗位叶光合速率(A)和开花吐丝间隔期(B)的影响 图中不同字母代表处理间差异显著(P < 0.05); CK、IV6、IV12、IS、IS15分别代表不灌水对照、拔节期、大口期、吐丝期和吐丝后15 d灌水处理。"

图6

吐丝期土壤含水量与光合速率及穗粒数间关系 三角形、圆形和方形分别为2014年、2015年和2016年; CK、IV6、IV12、IS、IS15分别代表不灌水对照、拔节期、大口期、吐丝期和吐丝后15 d灌水处理。"

图7

1986-2016年试验点各个月份降水分布图 图中百分数字代表各个月份降水量变异系数。"

[1] Cui J X, Yan P, Wang X L, Yang J, Li Z J, Yang X L, Sui P, Chen Y Q. Integrated assessment of economic and environmental consequences of shifting cropping system from wheat-maize to monocropped maize in the North China Plain. J Clean Prod, 2018,193:524-532.
[2] Liu C M, Zhang X Y, Zhang Y Q. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter. Agric For Meteorol, 2002,111:109-120.
[3] Sun H Y, Shen Y J, Yu Q, Flerchinger G N, Zhang Y Q, Liu C M, Zhang X Y. Effect of precipitation change on water balance and WUE of the winter wheat-summer maize rotation in the North China Plain. Agric Water Manag, 2010,97:1139-1145.
[4] Zhang X, Pei D, Chen S, Sun H, Yang Y. Performance of double cropped winter wheat-summer maize under minimum irrigation in the North China Plain. Agron J, 2006,98:1620-1626.
[5] Shen Y, Zhang Y, Scanlon B R, Lei H, Yang D, Fan Y. Energy/water budgets and productivity of the typical croplands irrigated with groundwater and surface water in the North China Plain. Agric For Meteorol, 2013,181:133-142.
[6] Umair M, Shen Y, Qi Y, Zhang Y, Ahmad A, Pei H, Liu M. Evaluation of the CropSyst Model during wheat-maize rotations on the North China Plain for identifying soil evaporation losses. Fron Plant Sci, 2017,8:1667.
[7] Xiao D P, Shen Y J, Qi Y Q, Moiwo J P, Min L L, Zhang Y C, Guo Y, Pei H W. Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain region. Agric Syst, 2017,153:109e117.
[8] Gao Z, Feng H Y, Liang X G, Zhang L, Lin S, Zhao X, Shen S, Zhou L L, Zhou S L. Limits to maize productivity in North China Plain: a comparison analysis for spring and summer maize. Field Crops Res, 2018,228:39-47.
[9] Çakir R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res, 2004,89:1-16.
[10] Chinnusamy V, Zhu J K. Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol, 2009,12:133-139.
doi: 10.1016/j.pbi.2008.12.006 pmid: 19179104
[11] 纪瑞鹏, 车宇胜, 朱永宁, 梁涛, 冯锐, 于文颖, 张玉书. 干旱对东北春玉米生长发育和产量的影响. 应用生态学报, 2012,23:3021-3026.
Ji R P, Che Y S, Zhu Y N, Liang T, Feng R, Yu W Y, Zhang Y S. Impacts of drought stress on the growth and development and grain yield of spring maize in Northeast China. Chin J Appl Ecol, 2012,23:3021-3026 (in Chinese with English abstract).
[12] 李叶蓓, 陶洪斌, 王若男, 张萍, 吴春江, 雷鸣, 张巽, 王璞. 干旱对玉米穗发育及产量的影响. 中国生态农业学报, 2015,23:383-391.
Li Y B, Tao H B, Wang R N, Zhang P, Wu C J, Lei M, Zhang X, Wang P. Effect of drought on ear development and yield of maize. Chin J Eco-Agric, 2015,23:383-391 (in Chinese with English abstract).
[13] Denmead O T, Shaw R H. The effects of soil moisture stress at different stages of growth on the development and yield of corn. Agron J, 1960,52:272-274.
[14] Li Y, Guan K, Peng B, Franz T E, Wardlow B, Pan M. Quantifying irrigation cooling benefits to maize yield in the US Midwest. Glob Change Biol, 2020,26:3065-3078.
[15] 张岁岐, 周小平, 慕自新, 山仑, 刘小芳. 不同灌溉制度对玉米根系生长及水分利用效率的影响. 农业工程学报, 2009,25(10):1-6.
Zhang S Q, Zhou X P, Mu Z X, Shan L, Liu X F. Effects of different irrigation patterns on root growth and water use efficiency of maize. Trans CSAE,2009, 25(10):1-6.
[16] Li Z Z, Sun Z H. Optimized single irrigation can achieve high corn yield and water use efficiency in the Corn Belt of Northeast China. Eur J Agron, 2016,75:12-24.
[17] Gao Z, Liang X G, Lin S, Zhao X, Zhang L, Zhou L L, Shen S, Zhou S L. Supplemental irrigation at tasseling optimizes water and nitrogen distribution for high-yield production in spring maize. Field Crops Res, 2017,209:120-128.
[18] Borrás L, Vitantonio-Mazzini L N. Maize reproductive development and kernel set under limited plant growth environments. J Exp Bot, 2018,69:3235-3243.
doi: 10.1093/jxb/erx452 pmid: 29304259
[19] 陈国平, 王荣焕, 赵久然. 玉米高产田的产量结构模式及关键因素分析. 玉米科学, 2009,17(4):89-93.
Chen G P, Wang R H, Zhao J R. Analysis on yield structural model and key factors of maize high-yield plots. J Maize Sci, 2009,17(4):89-93.
[20] Oury V, Caldeira C F, Prodhomme D, Pichon J P, Gibon Y, Tardieu F, Turc O. Is change in ovary carbon status a cause or a consequence of maize ovary abortion in water deficit during flowering? Plant Physiol, 2016,171:997-1008.
doi: 10.1104/pp.15.01130 pmid: 27208256
[21] Shen S, Zhang L, Liang X G, Zhao X, Lin S, Qu L H, Liu Y P, Gao Z, Ruan Y L, Zhou S L. Delayed pollination and low availability of assimilates are major factors causing maize kernel abortion. J Exp Bot, 2018,69:1599-1613.
doi: 10.1093/jxb/ery013 pmid: 29365129
[22] Zinselmeier C, Jeong B R, Boyer J S. Starch and the control of kernel number in maize at low water potentials. Plant Physiol, 1999,121:25-36.
doi: 10.1104/pp.121.1.25 pmid: 10482657
[23] Zinselmeier C, Lauer M J, Boyer J S. Reversing drought-induced losses in grain-yield: sucrose maintains embryo growth in maize. Crop Sci, 1995,35:1390-1400.
[24] Boyer J S, McLaughlin J E,. Functional reversion to identify controlling genes in multigenic responses: analysis of floral abortion. J Exp Bot, 2007,58:267-277.
doi: 10.1093/jxb/erl177 pmid: 17105969
[25] Ruan Y L, Patrick J W, Bouzayen M, Osorio S, Fernie A R. Molecular regulation of seed and fruit set. Trends Plant Sci, 2012,17:656-665.
doi: 10.1016/j.tplants.2012.06.005 pmid: 22776090
[26] Oury V, Tardieu F, Turc O. Ovary apical abortion under water deficit is caused by changes in sequential development of ovaries and in silk growth rate in maize. Plant Physiol, 2016,171:986-996.
doi: 10.1104/pp.15.00268 pmid: 26598464
[1] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[2] 郑迎霞, 陈杜, 魏鹏程, 卢平, 杨锦越, 罗上轲, 叶开梅, 宋碧. 种植密度对贵州春玉米茎秆抗倒伏性能及籽粒产量的影响[J]. 作物学报, 2021, 47(4): 738-751.
[3] 朱亚利, 王晨光, 杨梅, 郑学慧, 赵成凤, 张仁和. 不同熟期玉米不同粒位籽粒灌浆和脱水特性对密度的响应[J]. 作物学报, 2021, 47(3): 507-519.
[4] 刘朋召,师祖姣,宁芳,王瑞,王小利,李军. 不同降雨状况下渭北旱地春玉米临界氮稀释曲线与氮素营养诊断[J]. 作物学报, 2020, 46(8): 1225-1237.
[5] 李瑞杰,唐会会,王庆燕,许艳丽,王琦,卢霖,闫鹏,董志强,张凤路. 5-氨基乙酰丙酸和乙烯利对东北春玉米源库碳平衡的调控效应[J]. 作物学报, 2020, 46(7): 1063-1075.
[6] 张玉芹,杨恒山,李从锋,赵明,罗方,张瑞富. 条带耕作错位种植对灌区春玉米产量形成与冠根特征的影响[J]. 作物学报, 2020, 46(6): 902-913.
[7] 白伟,孙占祥,张立祯,郑家明,冯良山,蔡倩,向午燕,冯晨,张哲. 耕层构造对土壤三相比和春玉米根系形态的影响[J]. 作物学报, 2020, 46(5): 759-771.
[8] 张力岚, 张列梅, 牛焕颖, 徐益, 李玉, 祁建民, 陶爱芬, 方平平, 张立武. 黄麻SSR标记与纤维产量性状的相关性[J]. 作物学报, 2020, 46(12): 1905-1913.
[9] 陈二影, 王润丰, 秦岭, 杨延兵, 黎飞飞, 张华文, 王海莲, 刘宾, 孔清华, 管延安. 谷子芽期耐盐碱综合鉴定及评价[J]. 作物学报, 2020, 46(10): 1591-1604.
[10] 宁芳,张元红,温鹏飞,王瑞,王倩,董朝阳,贾广灿,李军. 不同降水状况下旱地玉米生长与产量对施氮量的响应[J]. 作物学报, 2019, 45(5): 777-791.
[11] 唐会会,许艳丽,王庆燕,马正波,李光彦,董会,董志强. 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制[J]. 作物学报, 2019, 45(3): 431-442.
[12] 樊海潮,顾万荣,杨德光,尉菊萍,朴琳,张倩,张立国,杨秀红,魏湜. 化控剂对东北春玉米茎秆理化特性及抗倒伏的影响[J]. 作物学报, 2018, 44(6): 909-919.
[13] 白伟,张立祯,逄焕成,孙占祥,牛世伟,蔡倩,安景文. 秸秆还田配施氮肥对东北春玉米光合性能和产量的影响[J]. 作物学报, 2017, 43(12): 1845-1855.
[14] 张楚,张永清,路之娟,刘丽琴. 苗期耐低氮基因型苦荞的筛选及其评价指标[J]. 作物学报, 2017, 43(08): 1205-1215.
[15] 吴晓丽,李朝苏,汤永禄,李俊,马孝玲,李式昭,黄明波. 四川盆地9000 kg hm-2产量潜力小麦品种的花后冠层结构、生理及同化物分配特性[J]. 作物学报, 2017, 43(07): 1043-1056.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!