欢迎访问作物学报,今天是

作物学报 ›› 2023, Vol. 49 ›› Issue (1): 1-11.doi: 10.3724/SP.J.1006.2023.23018

• 综述 •    下一篇

营养导向型作物新品种选育与审定现状、问题与展望

朱大洲1,3(), 武宁1,3, 张勇2, 孙君茂1,*(), 陈萌山1,*()   

  1. 1农业农村部食物与营养发展研究所, 北京 100081
    2中国农业科学院作物科学研究所, 北京 100081
    3成都大学, 四川成都 610000
  • 收稿日期:2022-02-25 接受日期:2022-07-21 出版日期:2023-01-12 网络出版日期:2022-08-16
  • 通讯作者: 孙君茂,陈萌山
  • 作者简介:E-mail: zhudazhou@caas.cn
  • 基金资助:
    中国农业科学院科技创新工程重大科研任务项目(CAAS-XTCX20190025);青年英才专项(ASTIP2022B-3)

Current situation, issues, and prospects of breeding and approval of new varieties of nutrition-oriented crops

ZHU Da-Zhou1,3(), WU Ning1,3, ZHANG Yong2, SUN Jun-Mao1,*(), CHEN Meng-Shan1,*()   

  1. 1Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
    2Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    3Chengdu University, Chengdu 610000, Sichuan, China
  • Received:2022-02-25 Accepted:2022-07-21 Published:2023-01-12 Published online:2022-08-16
  • Contact: SUN Jun-Mao,CHEN Meng-Shan
  • Supported by:
    Major Scientific Research Task of the Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-XTCX20190025);Youth Talents Project(ASTIP2022B-3)

摘要:

随着我国经济社会的发展和人民生活水平的不断提高, 消费者对饮食的要求已经从单纯追求温饱和口感向营养和健康转变, 居民膳食结构转型升级需求十分迫切, 营养和健康品质导向的作物育种势在必行。本文从我国农作物育种目标的变迁出发, 阐述了国内外营养导向型作物育种研究进展情况, 梳理了我国作物育种中关注的营养品质指标, 分析了作物新品种审定中已涉及的营养指标和存在的问题。结合消费需求, 提出把营养指标纳入现行作物品种审定体系的建议与展望, 以推动作物营养品质育种的快速发展, 从源头支撑居民营养改善和“健康中国”建设。

关键词: 农产品, 膳食结构, 营养品质, 作物育种

Abstract:

With China’s economic and social development and the continuous improvement of people’s living standards, the consumers’ diet preference has switched from purely pursuing food taste to more nutrition and health demand, resulting in an urgent need for a transformation and upgrading of the current dietary structure to match the new trend. Correspondingly, nutrition and health-oriented crop breeding is imperative. This review aims to elaborate the research progresses in nutrition-oriented crop breeding in the world with the evolving goals of crop breeding in China, to sort out the nutritional quality indicators dominating in crop breeding globally, and to analyze the problems in existing nutritional indicators involved in the approval of new crop varieties in China. In conclusions, nutritional indicators combined with the consumer nutritional demand are put forward to the current examination and verification system of existing and new crop varieties in China and thus to promote the rapid development of crop nutritional breeding and support the nutrition demand of consumers and the construction of “Healthy China” from the source.

Key words: agricultural products, feeding structure, nutritional quality, crop breeding

表1

典型营养型作物新品种"

作物种类
Crop type
品种名称
Variety name
品种类型
Variety type
营养指标
Nutritional indicator
营养素含量
Nutrient content
甘薯
Sweetpotato
浙紫薯5号 Zhezishu 5 高花青素
High anthocyanin
≥0.4 mg g-1 0.4049 mg g-1
湛紫薯3号 Zhanzishu 3 0.4603 mg g-1
绵紫薯9号Mianzishu 9 0.5597-0.7653 mg g-1
福薯317 Fushu 317 1.0019 mg g-1
东风8号Dongfeng 8 2.322 mg g-1
福菜薯23 Fucaishu 23 0.7 mg g-1
福宁紫3号 Funingzi 3 0.41 mg g-1
浙薯81 Zheshu 81 高胡萝卜素
High carotene
≥0.1 mg g-1 0.1603 mg g-1
普薯32 Pushu 32 0.173 mg g-1
徐渝薯34 Xuyushu 34 0.1137 mg g-1
福宁薯12 Funingshu 12 0.1013 mg g-1
花生
Peanut
濮花666 Puhua 666 高油酸
High oleic acid
≥70% 80.2%
菏花16 Hehua 16 80.9%
顺花1号 Shunhua 1 79.6%
中花27 Zhonghua 27 79.45%
花育9111 Huayu 9111 80.4%
正花6号 Zhenghua 6 81.50%
吉农花2号 Jinonghua 2 81.30%
玉米
Corn
鲁玉13 Luyu 13 高赖氨酸
Homolysine
≥0.4% 9.31%
本高4号 Bengao 4 0.5%
辽单678 Liaodan 678 0.44%
农科糯336 Nongkenuo 336 高叶酸
High folic acid
≥1.2 mg g-1 3.47 mg g-1
京科糯569 Jingkenuo 569 3 mg g-1
农科玉368 Nongkeyu 368 2.446 mg g-1
油菜
Rape
德核杂油8号 Dehezayou 8 低芥酸
Low erucic acid
芥酸含量不超过脂肪酸组成3%
Erucic acid content does not exceed 3% of fatty acid composition
0.20%
中双9号 Zhongshuan 9 0%
周油796 Zhouyou 796 0.3%
大豆
Soybean
吉育257 Jiyu 257 高蛋白
High protein
≥43% 43.66%
克豆48 Kedou 48 44.34%
牡豆15 Mudou 15 45.08%
秦豆2014 Qindou 2014 47.79%
小麦
Wheat
山农101 Shannong 101 高麦黄酮
High Tritoflavones
1.013 mg kg-1
山农48 Shannong 48 高叶黄素
High lutein
12.8 μg g-1
济麦8040 Jimai 8040 7.6 μg g-1
彩麦08 Caimai 08 高花青素
High anthocyanin
4.0 μg g-1
水稻 Rice 浙大锌稻 Zhedaxindao 高锌 High zinc ≥30 mg kg-1 32.4 mg kg-1
[1] 王志宏, 孙静, 王惠君, 刘爱玲, 张兵, 丁钢强. 中国居民膳食结构的变迁与营养干预策略发展. 营养学报, 2019, 41: 427-432.
Wang Z H, Sun J, Wang H J, Liu A L, Zhang B, Ding G Q. Dietary structure transition and development of nutritional intervention strategies in China. Acta Nutr Sin, 2019, 41: 427-432. (in Chinese with English abstract)
[2] 魏明桦. 食用农产品营养保健成分优化配置系统的构建与推广应用研究. 福建农林大学博士学位论文, 福建福州, 2017.
Wei M H. Construction, Promotion and Application of Optimization System on Nutritional and Healthy Ingredients of Edible Agricultural Products. PhD Dissertation of Fujian Agriculture and Forestry University, Fuzhou, Fujian, China, 2017. (in Chinese with English abstract)
[3] 谭一泓. 健康始于有营养的食物: 营养型农业助力“健康中国”建设. 高科技与产业化, 2019, (11): 30-32.
Tan Y H. Health starts with nutritious food: nutritive agriculture helps the construction of “Healthy China”. High Technol Ind, 2019, (11): 30-32. (in Chinese with English abstract)
[4] 储著源. 习近平新时代健康治理观及其时代价值. 常州大学学报, 2020, 21(1): 10-19.
Chu Z Y. Xi Jinping’s concepts of health governance and their contemporary values in the new era. J Changzhou Univ, 2020, 21(1): 10-19. (in Chinese with English abstract)
[5] 万志兵. 育种的目标性状、遗传改良和育种策略. 安徽农学通报, 2007, (6): 80-81.
Wan Z B. Target characters genetic improvement and strategy of breeding. Anhui Agric Sci Bull, 2007, (6): 80-81. (in Chinese with English abstract)
[6] 李振声. 我国小麦育种的发展历程. 中国农村科技, 2010, (增刊1): 26-28.
Li Z S. The development history of wheat breeding in my country. China Rural Sci Technol, 2010, (S1): 26-28. (in Chinese with English abstract)
[7] 王月华, 何虎, 潘晓华. 我国水稻育种技术发展历程回顾. 江西农业学报, 2012, 24(2): 26-28.
Wang Y H, He H, Pan X H. Progress review on technology of rice breeding in China. Acta Agric Jiangxi, 2012, 24(2): 26-28. (in Chinese with English abstract)
[8] 张庆吉. 我国第1个玉米单交种的选育推广后记. 河南农业科学, 2009, (9): 39-41.
Zhang Q J. Postscript of the selection and promotion of the first maize single cross in my country. J Henan Agric Sci, 2009, (9): 39-41. (in Chinese with English abstract)
[9] 谢一芝, 郭小丁, 贾赵东, 马佩勇, 边小峰, 禹阳. 中国食用甘薯育种现状及展望. 江苏农业学报, 2018, 34: 1419-1424.
Xie Y Z, Guo X D, Jia Z D, Ma P Y, Bian X F, Yu Y. Progresses and prospects on edible sweetpotato breeding in China. Jiangsu J Agric Sci, 2018, 34: 1419-1424. (in Chinese with English abstract)
[10] 孙允超. 小麦育种进程与现代育种方法分析. 农业科技通讯, 2013, (6): 6-10.
Sun Y C. Analysis of wheat breeding process and modern breeding methods. Bull Agric Sci Technol, 2013, (6): 6-10. (in Chinese with English abstract)
[11] 卢秉生, 丰光, 李妍妍, 娄志东. 我国玉米育种的发展进程及对未来育种目标的初探. 杂粮作物, 2010, 30(2): 68-71.
Lu B S, Feng G, Li Y Y, Lou Z D. Discussion on the development of breeding process and the future breeding target of China maize. Rain Fed Crops, 2010, 30(2): 68-71. (in Chinese with English abstract)
[12] 程汝宏. 产业化生产背景下的谷子育种目标. 河北农业科学, 2010, 14(11): 92-95.
Cheng R H. Breeding objective of foxtail millet under the background of industrial production. J Hebei Agric Sci, 2010, 14(11): 92-95. (in Chinese with English abstract)
[13] 吴比, 胡伟, 邢永忠. 中国水稻遗传育种历程与展望. 遗传, 2018, 40: 841-857.
Wu B, Hu W, Xing Y Z. The history and prospects of rice genetics and breeding in China. Hereditas, 2018, 40: 841-857. (in Chinese with English abstract)
[14] 蒋慕东. 二十世纪中国大豆改良、生产与利用研究. 南京农业大学博士学位论文, 江苏南京, 2006.
Jiang M D. Study on Improvement, Production and Utilization in China in the 20th Century. PhD Dissertation of Nanjing Agricultural University, Nanjing, Jiangsu, China, 2006. (in Chinese with English abstract)
[15] 李爱贤, 刘庆昌, 王庆美, 张海燕, 侯夫云. 我国甘薯育种研究现状及展望. 山东农业科学, 2009, (1): 38-42.
Li A X, Liu Q C, Wang Q M, Zhang H Y, Hou F Y. The status and prospects of sweet potato breeding research in my country. Shandong Agric Sci, 2009, (1): 38-42. (in Chinese with English abstract)
[16] 魏登峰, 王琦琪. 陈萌山: 推进营养导向型食物生产发展. 农产品市场, 2020, (11): 9-13.
Wei D F, Wang Q Q. Chen Meng Shan: promote the development of nutrition-oriented food production. Agric Prod Market, 2020, (11): 9-13. (in Chinese with English abstract)
[17] 谢一芝, 郭小丁, 贾赵东, 马佩勇, 边小峰. 紫心甘薯育种现状及展望. 植物遗传资源学报, 2012, 13: 709-713.
Xie Y Z, Guo X D, Jia Z D, Ma P Y, Bian X F. Progresses and prospects on purple sweetpotato breeding. J Plant Genet Resour, 2012, 13: 709-713. (in Chinese with English abstract)
[18] 卢士军, 黄家章, 吴鸣, 沈东婧, 孙君茂. 营养导向型农业的概念、发展与启示. 中国农业科学, 2019, 52: 3083-3088.
Lu S J, Huang J Z, Wu M, Shen D J, Sun J M. The concept development of nutrition-sensitive agriculture and its enlightenments to China. Sci Agric Sin, 2019, 52: 3083-3088. (in Chinese with English abstract)
[19] 朱宏, 梁克红, 徐海泉, 仇菊, 郭燕枝, 黄家章, 朱大洲, 孙君茂. 我国农产品营养标准体系现状与发展建议. 中国农业科学, 2019, 52: 3145-3154.
Zhu H, Liang K H, Xu H Q, Qiu J, Guo Y Z, Huang J Z, Zhu D Z, Sun J M. Review and suggestion for nutrition standard of agricultural products in China. Sci Agric Sin, 2019, 52: 3145-3154. (in Chinese with English abstract)
[20] Fitzpatrick T B, Basset G J C, Borel P, Carrari F, DellaPenna D, Fraser P D, Hellmann H, Osorio S, Rothan C, Valpuesta V, Caris-Veyrat C, Fernie A R. Vitamin deficiencies in humans: can plant science help. Plant Cell, 2012, 24: 395-414.
doi: 10.1105/tpc.111.093120
[21] Ye X, Albabili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (β-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science, 2000, 287: 303-305.
doi: 10.1126/science.287.5451.303
[22] Paine J A, Shipton C A, Chaggar S. Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol, 2005, 23: 482-487.
pmid: 15793573
[23] Schmidt M A, Parrott W A, Hildebrand D F. Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits. Plant Biotechnol J, 2015 13: 590-600.
[24] 姜凌, 张春义. 作物叶酸生物强化. 生命科学, 2015, 27: 1055-1060.
Jiang L, Zhang C Y. Folate fortification in crops. Chin Bull Life Sci, 2015, 27: 1055-1060. (in Chinese with English abstract)
[25] Naqvi S, Zhu C, Farre G. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci USA, 2009, 106: 7762-7767.
doi: 10.1073/pnas.0901412106
[26] Garza R, Iii J, Hanson A D. From the cover: folate biofortification of tomato fruit. Proc Natl Acad Sci USA, 2007, 104: 4218-4222.
doi: 10.1073/pnas.0700409104
[27] Nunes A, Kalkmann D C, Arag O F. Folate biofortification of lettuce by expression of a codon optimized chicken GTP cyclohydrolase I gene. Trans Res, 2009, 18: 661-667.
doi: 10.1007/s11248-009-9256-1
[28] Ramírez R, Naty G, García-Salinas C, Arag O F J L. Metabolic engineering of folate and its precursors in Mexican common bean (Phaseolus vulgaris L.). Plant Biotechnol J, 2016, 11: 2021-2032.
[29] Bocobza S E, Malitsky S, Araújo W L. Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis. Plant Cell, 2013, 25: 288-307.
doi: 10.1105/tpc.112.106385
[30] 姚琳. 大豆GmGCHIGmADCS基因共表达对拟南芥叶酸含量的影响. 华中农业大学硕士学位论文, 湖北武汉, 2013.
Yao L. The Effect of Co-Expression of Glycine Max GmGCHI and GmADCS Genes on the Folate Content of Arabidopsis thaniana. MS Thesis of Huazhong Agricultural University, Wuhan, Hubei, China, 2013. (in Chinese with English abstract)
[31] Bulley S M, Maysoon R, Dana H, Wolfgang O, Nicole S, Michele W, Elspeth M, Andrew G, William L. Gene expression studies in kiwifruit and gene over-expression in Arabidopsis indicates that GDP-L-galactose guanyltransferase is a major control point of vitamin C biosynthesis. J Exp Bot, 2009, 3: 765-778.
[32] Gest N, Garchery C, Gautier H, Jiménez A, Stevens R. Light-dependent regulation of ascorbate in tomato by a monodehydroascorbate reductase localized in peroxisomes and the cytosol. Plant Biotechnol J, 2013, 11: 344-354.
doi: 10.1111/pbi.12020 pmid: 23130940
[33] Nafisi S, Sadeghi G B, Panahyab A. Interaction of aspirin and vitamin C with bovine serum albumin. J Photochem Photobiol B, 2011, 105: 198-202.
doi: 10.1016/j.jphotobiol.2011.09.002
[34] Qin A G, Shi Q H, Yu X C. Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes. Mol Biol Rep, 2010, 38: 1557-1566.
doi: 10.1007/s11033-010-0264-2
[35] 姜凌, 张春义. 植物维生素的生物强化进展. 高科技与产业化, 2018, (7): 28-35.
Jiang L, Zhang C Y. Progress in biofortification of plant vitamins. High Technol Ind, 2018, (7): 28-35 (in Chinese with English abstract).
[36] Konda A R, Nazarenus T J, Nguyen H, Yang J, Gelli M, Swenson S, Shipp J M, Schmidt M A, Cahoon R E, Ciftci O N, Zhang C, Clemente T E, Cahoon E B. Metabolic engineering of soybean seeds for enhanced vitamin E tocochromanol content and effects on oil antioxidant properties in polyunsaturated fatty acid-rich germplasm. Metabol Eng, 2020, 57: 63-73.
doi: 10.1016/j.ymben.2019.10.005
[37] Karunanandaa B, Qi Q, Hao M, Baszis S R, Jensen P K, Wrong Y H, Jiang J, Venkatramesh M, Gruys K J, Moshiri F, Post B D, Weiss J D, Valentin H E. Metabolically engineered oilseed crops with enhanced seed tocopherol. Metabol Eng, 2005, 7: 384-400.
doi: 10.1016/j.ymben.2005.05.005
[38] 张亮, 张兰, 王磊. 植物维生素E基因工程研究进展. 生物技术进展, 2012, 2: 397-403.
Zhang L, Zhang L, Wang L. The advance of vitamin E genetic engineering in plan. Curr Biotechnol, 2012, 2: 397-403. (in Chinese with English abstract)
[39] 郝元峰, 张勇, 何中虎. 作物锌生物强化研究进展. 生命科学, 2015, 27: 1047-1054.
Hao Y F, Zhang Y, He Z H. Research progress in crop zinc bioaugmentation. Chin Bull Life Sci, 2015, 27: 1047-1054. (in Chinese with English abstract)
[40] 梅忠, 王治学, 梅沙, 蒋宙蕾, 梅淑芳, 舒小丽, 吴殿星. 高锌水稻研究进展. 核农学报, 2016, 30: 1515-1523.
doi: 10.11869/j.issn.100-8551.2016.08.1515
Mei Z, Wang Z X, Mei S, Jiang Z L, Mei S F, Shu X L, Wu D X. Study on rice high on zinc content. J Nucl Agric Sci, 2016, 30: 1515-1523. (in Chinese with English abstract)
[41] 雷国方, 杨树明, 曾亚文, 杜娟, 普晓英, 杨涛. 粳型水稻高钙富锌新品系功米2号选育及栽培技术. 农业科技通讯, 2010, (1): 138-139.
Lei G F, Yang S M, Zeng Y W, Du J, Pu X Y, Yang T. Breeding and Cultivation Techniques of Gongmi 2, a new japonica rice line with high calcium and zinc content. Bull Agric Sci Technol, 2010, (1): 138-139. (in Chinese with English abstract)
[42] 张琳琳, 韩娟英, 刘振, 舒小丽, 吴殿星. 迷你型高锌含量水稻的选育及其特征特性. 中国稻米, 2011, 17(6): 66-68.
doi: 10.3969/j.issn.1006-8082.2011.06.020
Zhang L L, Han J Y, Liu Z, Shu X L, Wu D X. Breeding of mini rice with high zinc content and its characteristics. China Rice, 2011, 17(6): 66-68. (in Chinese with English abstract)
[43] 陈新民, 何中虎, 王德森. 国审小麦新品种中麦175. 中国种业, 2009, (7): 69.
Chen X M, He Z H, Wang D S. Nationally approved new wheat variety Zhongmai 175. China Seed Ind, 2009, (7): 69. (in Chinese)
[44] 刘传光, 周新桥, 陈达刚, 郭洁, 陈平丽, 陈可, 李逸翔, 陈友订. 功能性水稻研究进展及前景展望. 广东农业科学, 2021, 48(10): 87-99.
Liu C G, Zhou X Q, Chen D G, Guo J, Chen P L, Chen K, Li Y X, Chen Y D. Progress and prospects of functional rice research. Guangdong Agric Sci, 2021, 48(10): 87-99. (in Chinese with English abstract)
[45] 吴忠坤. 稻米富铁途径. 中国稻米, 2007, (3): 20-22.
Wu Z S. The way to enrich iron in rice. Chin Rice, 2007, (3): 20-22. (in Chinese with English abstract)
[46] 贾倩, 赵琦. 高铁功能型水稻研究进展. 生物技术通报, 2009, (6): 16-19.
Jia Q, Zhao Q. progress of iron-rich functional rice researches. Biotechnol Bull, 2009, (6): 16-19 (in Chinese with English abstract).
[47] 张名位, 赖来展, 杨雄. 稻米品质遗传研究方法概述. 作物研究, 1996, (3): 43-46.
Zhang M W, Lai L Z, Yang X. Overview of research methods on rice quality genetics. Crop Res, 1996, (3): 43-46. (in Chinese with English abstract)
[48] 方忠祥, 倪元颖. 花青素生理功能研究进展. 广州食品工业科技, 2001, (3): 60-62.
Fang Z X, Ni Y Y. Research progress on the physiological functions of anthocyanins. Guangzhou Food Sci Technol, 2001, (3): 60-62. (in Chinese with English abstract)
[49] Qin L Z, Sui Z Y, Dong C Z, Hong M L, Hui C W, Zhong F Y, Xian R X, Rong X S, Jian T T, He Y L. Development of “purple endosperm rice” by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system. Mol Plant, 2017, 10: 918-929.
doi: 10.1016/j.molp.2017.05.008
[50] Halpin C. Gene stacking in transgenic plants: the challenge for 21st century plant biotechnology. Plant Biotechnol J, 2005, 3: 141-155.
doi: 10.1111/j.1467-7652.2004.00113.x
[51] Borg S, Brinch-Pedersen H, Tauris B, Holm P B. Iron transport, deposition and bioavailability in the wheat and barley grain. Plant Soil, 2009, 325: 15-24.
doi: 10.1007/s11104-009-0046-6
[52] Raboy V, Gerbasi P F, Young K A, Stoneberg S D, Ertl D S. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol, 2000, 124: 355-368.
pmid: 10982449
[53] Pilu R, Panzeri D, Gavazzi G, Rasmussen S K, Consonni G, Nielsen E. Phenotypic, genetic and molecular characterization of a maize low phytic acid mutant (lpa241). Theor Appl Genet, 2003, 107: 980-987.
pmid: 14523526
[54] Shi J. The maize low-phytic acid mutant lpa2 Is caused by mutation in an inositol phosphate kinase gene. Plant Physiol, 2003, 131: 507-515.
doi: 10.1104/pp.014258
[55] Shi J, Wang H, Hazebroek J, Ertl D S, Harp T. The maize low-phytic acid 3 encodes a myo-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds. Plant J, 2005, 42: 708-719.
pmid: 15918884
[56] Shi J, Wang H, Schellin K, Li B, Faller M, Stoop J M, Meeley R B, Ertl D S, Ranch J P, Glassman K. Embryo-specific silencing of a transporter reduces phytic acid content of maize and soybean seeds. Nat Biotechnol, 2007, 25: 930-937.
pmid: 17676037
[57] 王雪艳, 王忠华, 梅淑芳, 洪隽, 舒庆尧, 吴殿星. 高无机磷低植酸含量玉米突变体筛选初报. 核农学报, 2006, 20: 15-18.
Wang X Y, Wang Z H, Mei S F, Hong J, Shu Q Y, Wu D X. Brief report on screening maize mutants with high inorganic phosphorus and low phytic acid content. J Nucl Agric Sci, 2006, 20: 15-18. (in Chinese with English abstract)
[58] Kim S I, Andaya C B, Newman J W, Goyal S S, Tai T H. Isolation and characterization of a low phytic acid rice mutant reveals a. mutation in the rice orthologue of maize MIK. Theor Appl Genet, 2008, 117: 1291-1301.
doi: 10.1007/s00122-008-0863-7 pmid: 18726583
[59] 田纪春, 胥倩. 功能性小麦品种的概念, 类别和发展前景. 粮油食品科技, 2021, 29(2): 8.
Tian J C, Xu Q. Concepts, category and development prospect of functional wheat varieties. Sci Technol Cereals-Oils Foods, 2021, 29(2): 8. (in Chinese)
[60] 刘行丹, 邱颖波, 刘红梅, 刘建丰. 功能性水稻研究进展. 农业科技通讯, 2013, (3): 4.
Liu X D, Qiu Y B, Liu H M, Liu J F. Research progress of functional rice. Bull Agric Sci Technol, 2013, (3): 4. (in Chinese)
[61] Lucca P, Hurrell R, Potrykus I. Genetic engineering approaches to improve the bioavailability and the level of iron in. rice grains. Theor Appl Genet, 2001, 102: 392-397.
doi: 10.1007/s001220051659
[62] 胡培松. 功能性稻米研究与开发. 中国稻米, 2003, (5): 3-5.
Hu P S. Research and development of functional rice. China Rice, 2003, (5): 3-5. (in Chinese with English abstract)
[63] Zhang L L, Hu P S, Tang S Q, Zhao H J, Wu D X. Comparative studies on major nutritional components of rice with a giant embryo and a normal embryo. J Food Biochem, 2010, 29: 653-661.
doi: 10.1111/j.1745-4514.2005.00039.x
[64] 刘玲珑, 江玲, 刘世家, 周时荣, 张文伟, 王春明, 陈亮明, 翟虎渠, 万建民. 巨胚水稻W025糙米浸水后γ-氨基丁酸含量变化的研究. 作物学报, 2005, 31: 1265-1270.
Liu L L, Jiang L, Liu S J, Zhou S R, Zhang W W, Wang C M, Chen L M, Zhai H Q, Wan J M. Accumulation of the γ-aminobutyric acid brown rice: a new rice strain W025 with giant-embryo during water soaking. Acta Agron Sin, 2005, 31: 1265-1270. (in Chinese with English abstract)
[65] Dachtler M, Glaser T, Kohler K, Albert K. Combined HPLC-MS and HPLC-NMR on-line coupling for the separation. and determination of lutein and zeaxanthin stereoisomers in Spinach and in Retina. Anal Chem, 2001, 73: 667-674.
pmid: 11217779
[66] 王磊, 张春义. 营养型农业的发展背景及进展. 生物产业技术, 2019, (6): 59-63.
Wang L, Zhang C Y. Development background and progress of nutrition-oriented agriculture. Biotechnol Business, 2019, (6): 59-63. (in Chinese with English abstract)
[67] 庄文锋, 黎飞飞, 赵恒, 周婷婷, 刘超, 孔令让, 李安飞, 杨猛. 叶黄素合成关键基因及小麦生物强化研究展望. 分子植物育种, 2022. http://kns.cnki.net/kcms/detail/46.1068.S.20210903.1516.002.html.
Zhuang W F, Li F F, Zhao H, Zhou T T, Liu C, Kong L R, Li A F, Yang M. The progress and prospects of lutein biofortification for wheat. Mol Plant Breed, 2022. http://kns.cnki.net/kcms/detail/46.1068.S.20210903.1516.002.html (in Chinese with English abstract).
[68] 陈静. 高油酸花生遗传育种研究进展. 作物杂志, 2017, (3): 6-12.
Chen J. Advances in genetics and breeding of high oleic acid peanut. Crops, 2017, (3): 6-12. (in Chinese with English abstract)
[69] 李丽, 崔顺立, 穆国俊, 杨鑫雷, 侯名语, 李文平, 刘富强, 刘立峰. 高油酸花生遗传改良研究进展. 中国油料作物学报, 2019, 41: 986-997.
Li L, Cui S L, Mu G J, Yang X L, Hou M Y, Li W P, Liu F Q, Liu L F. Research progress of peanuts breeding high oleic acid. Chin J Oil Crop Sci, 2019, 41: 986-997 (in Chinese with English abstract).
[70] 张照华, 王志慧, 淮东欣, 谭家壮, 陈剑洪, 晏立英, 王晓军, 万丽云, 陈傲, 康彦平, 姜慧芳, 雷永, 廖伯寿. 利用回交和标记辅助选择快速培育高油酸花生品种及其评价. 中国农业科学, 2018, 51: 1641-1652.
Zhang Z H, Wang Z H, Huai D X, Tan J Z, Chen J H, Yan L Y, Wang X J, Wan L Y, Chen A, Kang Y P, Jiang H F, Lei Y, Liao B S. Fast development of high oleate peanut cultivars by using marker-assisted backcrossing and their evaluation. Sci Agric Sin, 2018, 51: 1641-1652. (in Chinese with English abstract)
[71] 赵婷, 王俊宏, 徐国忠, 翁伯琦. 花生高产优质育种与生物技术应用的研究进展. 热带作物学报, 2011, 32: 2187-2195.
Zhao T, Wang J H, Xu G Z, Weng B Q. Advance on peanut breeding of high-yielding and good-quality and the application of biological technology. Chin J Trop Crops, 2011, 32: 2187-2195. (in Chinese with English abstract)
[72] 傅廷栋. 中国油菜生产和品种改良的现状与前景. 安徽农学通报, 2000, 6(1): 8.
Fu T D. Current situation and prospects of rape production and variety improvement in China. Anhui Agric Sci Bull, 2000, 6(1): 8. (in Chinese)
[73] 农全东, 杨永超, 文和明. 双低油菜育种进展. 安徽农业科学, 2014, 42: 12434-12436.
Nong Q D, Yang Y C, Wen H M. Review on double-low rapeseed breeding. J Anhui Agric Sci, 2014, 42: 12434-12436. (in Chinese with English abstract)
[74] 孙晓敏, 李英, 李艳明, 习广清, 谌国鹏, 邓根生. 我国油菜育种研究技术和品质育种研究进展. 安徽农学通报, 2011, 17(3): 89-90.
Sun X M, Li Y, Li Y M, Xi G Q, Chen G P, Deng G S. The progress of technology and quality breeding of rapeseed breeding in China. Anhui Agric Sci Bull, 2011, 17(3): 89-90. (in Chinese with English abstract)
[75] Wang H Z. Application of microspore culture technology in the breeding of rapeseed hybrid. In: Wratte N, Salisbury P A. Proceedings of the Tenth International Rapeseed Congress, Canberra, Australia, 1999. pp264-269.
[76] 王金星, 景玉良, 付春旭, 姜世波, 张维耀, 高陆思, 曲梦楠, 付亚书. 高蛋白大豆新品种绥农76的选育与推广. 大豆科学, 2019, 38: 668-670.
Wang J X, Jing Y L, Fu C X, Jiang S B, Zhang W Y, Gao L S, Qu M N, Fu Y S. Breeding and extension of a high protein soybean variety Suinong 76. Soybean Sci, 2019, 38: 668-670. (in Chinese with English abstract)
[77] 雷勃钧, 钱华, 李希臣, 卢翠华, 周思君, 韩玉琴, 刘昭军, 刘广阳, 杨兴勇, 董全中, 赵凯, 赫世涛. 通过直接引入外源DNA育成高产、优质、高蛋白大豆新品种黑生101. 作物学报, 2000, 26: 725-730.
Lei B J, Qian H, Li X C, Lu C H, Zhou S J, Han Y Q, Liu Z J, Liu G Y, Yang X Y, Dong Q Z, Zhao K, He S T. Breeding of high-yield, high-quality, and high-protein content soybean cultivar-Heisheng 101 through direct introduction of alien DNA. Acta Agron Sin, 2000, 26: 725-730. (in Chinese with English abstract)
[78] 黄建成. 国外大豆品质育种的若干研究动态. 福建农业科技, 1990, (3): 23-25.
Huang J C. Some research trends of soybean quality breeding abroad. Fujian Agric Sci Technol, 1990, (3): 23-25. (in Chinese with English abstract)
[79] 杨春燕, 姚利波, 刘兵强, 张孟臣. 国内外大豆品质育种研究方法与最新进展. 华北农学报, 2009, 24(增刊1): 75-78.
Yang C Y, Yao L B, Liu B Q, Zhang M C. Advance on soybean quality breeding in China and abroad. Acta Agric Boreali-Sin, 2009, 24(S1): 75-78. (in Chinese with English abstract)
[80] 胡淑娜. 小麦蛋白质与淀粉含量互为条件的QTL分析. 山东农业大学硕士学位论文, 山东泰安, 2013.
Hu S N. Conditional QTL analysis of interaction between wheat protein and starch content. MS Thesis of Shandong Agricultural University, Tai’an, Shandong, China, 2013. (in Chinese with English abstract)
[81] Lee S I, Kim H U, Lee Y H, Suh S C, Lim Y P, Lee H Y, Kim H I. Constitutive and seed-specific expression of a maize lysine-feedback insensitive dihydrodipicolinate synthase gene leads to increased free lysine levels in rice seeds. Mol Breed, 2001, 8: 75-84.
doi: 10.1023/A:1011977219926
[82] 唐俐, 刘巧泉, 邓晓湘, 武小金, 辛世文. 无抗性选择标记的转高赖氨酸蛋白(LRP)基因籼稻恢复系的获得. 作物学报, 2006, 32: 1248-1251.
Tang L, Liu Q Q, Deng X X, Wu X J, Xin S W. LRP transgenic indica rice restorer line without resistance selection marker. Acta Agron Sin, 2006, 32: 1248-1251 (in Chinese with English abstract).
[83] 陈秀华, 于丽娟, 罗黎明, 陈洪梅, 刘丽. 玉米分子标记辅助育种及标记开发研究进展. 中国农业科技导报, 2016, 18(1): 26-31.
doi: 10.13304/j.nykjdb.2015.281
Chen X H, Yu L J, Luo L M, Chen H M, Liu L. Research progress on maize molecular marker-assisted breeding and marker development. J Agric Sci Technol, 2016, 18(1): 26-31. (in Chinese with English abstract)
[84] 国家农作物品种审定委员会. 主要农作物品种审定标准(国家级). 种业导刊, 2017, (11): 5-11.
National Crop Variety Certification Committee. Approval standards for main crop varieties (national level). J Seed Ind Guide, 2017, (11): 5-11. (in Chinese)
[85] 陈萌山. 发展营养导向型农业建设健康中国. 农村工作通讯, 2021, (7): 21-23.
Chen M S. Develop nutrition-oriented agriculture and build a healthy China. Newsl Work Rural Areas, 2021, (7): 21-23. (in Chinese)
[86] 胡琳琳, 马晶, 孙静, 刘远立. “进一步改善医疗服务行动计划” (2015-2020年): 第三方评估结果. 中华医院管理杂志, 2021, 37: 444-449.
Hu L L, Ma J, Sun J, Liu Y L. “Action plan for further improvement of medical services” (2015-2020): third-party evaluation results. Chin J Hosp Admin, 2021, 37: 444-449. (in Chinese with English abstract)
[87] 魏登峰, 王琦琪. 全国政协委员陈萌山: 推进营养导向型食物生产发展构建可持续发展的长效机制. 农村工作通讯, 2020, (11): 16-18.
Wei D F, Wang Q Q. Chen Meng-shan, member of the National Committee of the Chinese People’s Political Consultative Conference:promote the development of nutrition-oriented food production and build a long-term mechanism for sustainable development. Newsl Work Rural Areas, 2020, (11): 16-18. (in Chinese)
[1] 魏正业, 张海星, 石薇, 常生华, 张程, 贾倩民, 侯扶江. 种植方式与施氮对西北旱区饲草作物产量、品质和水分利用的影响[J]. 作物学报, 2022, 48(10): 2638-2653.
[2] 安建刚,敬夫,丁祎,肖怡,尚浩浩,李宏利,杨晓璐,唐道彬,王季春. 氮肥分期运筹对套作甘薯产量、品质及氮素效率的影响[J]. 作物学报, 2018, 44(12): 1858-1866.
[3] 李颖睿,陈茹梅,阎俊,何中虎,张勇. 黄淮冬麦区小麦品种植酸含量与植酸酶活性聚类分析[J]. 作物学报, 2014, 40(02): 329-336.
[4] 袁玲,张宣,杨静,杨春蕾,曹小闯,吴良欢. 不同栽培方式和秸秆还田对水稻产量和营养品质的影响[J]. 作物学报, 2013, 39(02): 350-359.
[5] 林伟静, 吴广枫, 李春红, 王燕, 周素梅. 品种与环境对我国裸燕麦营养品质的影响[J]. 作物学报, 2011, 37(06): 1087-1092.
[6] 李玲, 陈进红, 祝水金. 镉胁迫对转基因棉花SGK3和ZD-90种子品质性状的影响[J]. 作物学报, 2011, 37(05): 929-933.
[7] 田秀英;王正银. 硒对苦荞产量、营养与保健品质的影响[J]. 作物学报, 2008, 34(07): 1266-1272.
[8] 杜雄;左启华;冯丽肖;张维宏;窦铁岭;边秀举; 张立峰. 华北农牧交错区两种土壤类型下青饲玉米的施氮效应[J]. 作物学报, 2008, 34(06): 1051-1059.
[9] 兰海;谭登峰;高世斌;唐祈林;曹墨菊;潘光堂;荣廷昭. 普通玉米主要营养品质性状的遗传效应分析[J]. 作物学报, 2006, 32(05): 716-722.
[10] 徐绍忠;杨德;廖晓虹;毛孝强. 作物育种品系试验四种分析方法比较[J]. 作物学报, 2003, 29(01): 119-122.
[11] 刘开昌;胡昌浩;董树亭;王空军;李爱芹. 高油玉米需磷特性及磷素对籽粒营养品质的影响[J]. 作物学报, 2001, 27(02): 267-272.
[12] 宋文昌;张玉华. 水稻四倍化及其对农艺性状和营养成分的影响[J]. 作物学报, 1992, 18(02): 137-144.
[13] 李宗智. 冬小麦若干品质性状遗传及相关的研究[J]. 作物学报, 1990, 16(01): 8-18.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李绍清, 李阳生, 吴福顺, 廖江林, 李达模. 水稻孕穗期在淹涝胁迫下施肥的优化选择及其作用机理[J]. 作物学报, 2002, 28(01): 115 -120 .
[2] 王兰珍;米国华;陈范骏;张福锁. 不同产量结构小麦品种对缺磷反应的分析[J]. 作物学报, 2003, 29(06): 867 -870 .
[3] 杨建昌;张亚洁;张建华;王志琴;朱庆森. 水分胁迫下水稻剑叶中多胺含量的变化及其与抗旱性的关系[J]. 作物学报, 2004, 30(11): 1069 -1075 .
[4] 袁美;杨光圣;傅廷栋;严红艳. 甘蓝型油菜生态型细胞质雄性不育两用系的研究Ⅲ. 8-8112AB的温度敏感性及其遗传[J]. 作物学报, 2003, 29(03): 330 -335 .
[5] 王永胜;王景;段静雅;王金发;刘良式. 水稻极度分蘖突变体的分离和遗传学初步研究[J]. 作物学报, 2002, 28(02): 235 -239 .
[6] 王丽燕;赵可夫. 玉米幼苗对盐胁迫的生理响应[J]. 作物学报, 2005, 31(02): 264 -268 .
[7] 田孟良;黄玉碧;谭功燮;刘永建;荣廷昭. 西南糯玉米地方品种waxy基因序列多态性分析[J]. 作物学报, 2008, 34(05): 729 -736 .
[8] 胡希远;李建平;宋喜芳. 空间统计分析在作物育种品系选择中的效果[J]. 作物学报, 2008, 34(03): 412 -417 .
[9] 王艳;邱立明;谢文娟;黄薇;叶锋;张富春;马纪. 昆虫抗冻蛋白基因转化烟草的抗寒性[J]. 作物学报, 2008, 34(03): 397 -402 .
[10] 郑希;吴建国;楼向阳;徐海明;石春海. 不同环境条件下稻米组氨酸和精氨酸的胚乳和母体植株QTL分析[J]. 作物学报, 2008, 34(03): 369 -375 .