欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (02): 329-336.doi: 10.3724/SP.J.1006.2014.00329

• 耕作栽培·生理生化 • 上一篇    下一篇

黄淮冬麦区小麦品种植酸含量与植酸酶活性聚类分析

李颖睿1,陈茹梅2,阎俊3,何中虎1,4,张勇1,*   

  1. 1中国农业科学院作物科学研究所/国家小麦改良中心,北京 100081;2中国农业科学院生物技术研究所,北京 100081;3中国农业科学院棉花研究所,河南安阳 455000;4国际玉米小麦改良中心(CMMYT)中国办事处,北京 100081
  • 收稿日期:2013-06-25 修回日期:2013-11-24 出版日期:2014-02-12 网络出版日期:2013-12-05
  • 通讯作者: 张勇, E-mail: zhangyong05@caas.cn, Tel: 010-82108745
  • 基金资助:

    本研究由中央级公益性科研院所基本科研业务费专项资金, Harvest-Plus挑战计划项目(HPC#8273), 国家高技术研究发展计划(863计划)项目(2012AA101105)和中国农业科学院创新工程项目资助。

Variability of Phytate Content and Phytase Activity among Wheat Cultivars from Yellow and Huai River Valleys

LI Ying-Rui1,CHEN Ru-Mei2,YAN Jun3,HE Zhong-Hu1,4,ZHANG Yong1,*   

  1. 1 Institute of Crop Science / National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; 2 Biotechnology Research Institute, CAAS, Beijing 100081, China; 3 Cotton Research Institute, CAAS, Anyang 455004, China; 4 CIMMYT-China Office, c/o CAAS, Beijing 100081, China
  • Received:2013-06-25 Revised:2013-11-24 Published:2014-02-12 Published online:2013-12-05
  • Contact: 张勇, E-mail: zhangyong05@caas.cn, Tel: 010-82108745

摘要:

植酸含量与植酸酶活性是影响铁、锌等微量元素生物有效性的关键因子。200920102010—2011年度,在河南安阳种植212个黄淮麦区代表性小麦品种和高代品系,分析其籽粒植酸含量和植酸酶活性。结果表明,这2个指标变异范围较大,植酸含量为2.18~13.37 g kg-1,平均5.72 g kg-1;植酸酶活性为10~1759 U kg-1,平均657 U kg-1。品种及品种与年度互作效应显著影响植酸含量和植酸酶活性,以品种效应较大。根据植酸含量与植酸酶活性将参试品种分别聚为5类,类间植酸含量和植酸酶活性差异显著。石麦12、衡4568、洛麦21和济麦096141的植酸含量较低,且植酸酶活性较高,可作为进一步改良植酸含量和植酸酶活性的亲本。

关键词: 普通小麦, 植酸含量, 植酸酶活性, 营养品质

Abstract:

Phytate content and phytase activity are key factors influencing bioavailability of iron and zinc. To understand the status of phytate content and phytase activity in wheats from the Yellow and Huai River Valleys Winter Wheat Region, 212 representative cultivars and advanced lines were sown in Anyang, Henan province, China in 20092010 and 20102011 cropping seasons. Phytate content and phytase activity varied greatly among these cultivars, ranging from 2.18 to 13.37 g kg-1 of phytate content and from 10 to 1759 U kg-1 of phytase activity, with the mean values of 5.72 g kg-1 and 657 U kg-1, respectively. Both indices were significantly affected by genotype and genotype ´ season interaction, with genotype effect being predominant. All cultivars were classified into five groups based on the seasonal standardized values of phytate content and phytase activity, with significant difference among groups. Four cultivars, i.e., Shimai 12, Heng 4568, Luomai 21, and Jimai 096141 exhibited low phytate content and high phytase activity, and can be used in wheat breeding program aiming at improving iron and zinc nutritional quality.

Key words: Bread wheat, Phytate content, Phytase activity, Nutritional quality

[1]陈春明.中国营养状况十年跟踪(1990–2000).北京:北京人民卫生出版社,2004



Chen C M. Ten Year Tracking Nutritional Status in China (1990–2000). Beijing: Beijing People's Medical Publishing House, 2004 (in Chinese)



[2]Welch R M, Graham R D. A new paradigm for world agriculture: meeting human needs. Productive, sustainable, nutritious. Field Crops Res, 1999, 60: 1–10



[3]Bouis H E, Graham R D, Welch R M. The consultative group on international agriculture research (CGIAR) micronutrients project: justification and objectives. Food Nutr Bull, 2000, 21: 374–381



[4]Ortiz-Monasterio J I, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Pena R J. Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci, 2007, 46: 293–307



[5]张勇, 王德森, 张艳, 何中虎. 北方冬麦区小麦品种籽粒主要矿物质元素含量分布及其相关性分析. 中国农业科学, 2007, 40: 1871–1876



Zhang Y, Wang D S, Zhang Y, He Z H. Variation of major mineral elements concentration and their relationships in grain of Chinese wheat. Sci Agric Sin, 2007, 40: 1871–1876 (in Chinese with English abstract)



[6]Lei X G, Stahl C H. Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl Microbiol Biot, 2001, 57: 474–481



[7]Cosgrove D J. The chemistry and biochemistry of inositol polyphosphates. Pure Appl Chem, 1966, 16: 209–224



[8]Asada K, Tanaka K, Kasai Z .Formation of phytic acid in cereal grains. Ann New York Acad Sci, 1970, 165:801–814



[9]Liu Z H, Wang H Y, Wang X E, Zhang G P, Chen P D, LiuD J. Genotypic and spike positional difference in grain phytase activity, phytate, inorganic phosphorus, iron, and zinc contents in wheat. J Cereal Sci, 2006, 44: 212–219



[10]Schroder B, Breves G, Rodehutscord M. Mechanisms of intestinal phosphorus absorption and availability of dietary phosphorus in pigs. Dtsch Tieraerztl Wochenschr, 1996, 103: 209–214



[11]Brinch-Pedersen H, Sorensen L D, Holm P B. Engineering crop plants: getting a handle on phosphate. Trends Plant Sci, 2002, 7: 118–125



[12]Shamsuddin A M, Vucenik I. Mammary tumor inhibition by IP6: a review. Anticancer Res, 1999, 19: 36–71



[13]Jenab M, Thompson L U. Role of phytic acid in cancer and other diseases. In: Reddy N R, Sathe S K (eds.). Food Phytates. Boca Raton: The Chemical Rubber Company Press, 2002. pp 225–248



[14]Oh B C, Choi W C, Park S, Kim Y O, Oh T K. Biochemical properties and substrate specificities of alkaline and histidine acid phytases. Appl Microbiol Biot, 2004, 63: 362–372



[15]Chen R M, Xue G X, Chen P, Yao B, Yang W Z, Ma Q L, Fan Y L, Zhao Z Y, Mitchell C, Tarczynski, Shi J R. Transgenic maize plants expressing a fungal phytase gene. Transgenic Res, 2008, 17: 633-643



[16]王延锋, 郎志宏, 赵奎军, 黄大昉. 转基因作物的生态安全性问题及其对策. 生物技术通报, 2010, (7): 1–6



Wang Y, Lang Z H, Zhao K J, Huang D F. Ecological risks and countermeasures of genetically modified crops. Biotechnol Bull, 2010, (7): 1–6 (in Chinese)



[17]Zhang Y, Song Q, Yan J, Tang J, Zhao R, Zhang Y, He Z, Zou C, Ortiz-Monasterio I. Mineral element concentrations in grains of Chinese wheat cultivars. Euphytica, 2010, 174: 303–313



[18]Tiwari V K, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa G S, Dhaliwal H S, Keller B, Singh K. Mapping of quantitative trait loci for grain iron and zinc concentration in diploid a genome wheat. J Hered, 2009, 100: 771–776



[19]Shi R L, Li H W, Tong Y P, et al. Identification of quantitative trait locus of zinc and phosphorus density in wheat (Triticum aestivum L.) grain. Plant soil, 2008, 306: 95–104



[20]Ram S, Verma A, Sharma S. Large variability exits in phytase levels among Indian wheat varieties and synthetic hexaploids. J Cereal Sci, 2010, 52: 486–490



[21]吴澎, 陈建省, 田纪春. 137个微核心种质资源植酸含量的聚类分析. 中国粮油学报, 2010, 25(10): 19–23



Wu P, Chen J S, Tian J C. Cluster analysis of phytic acid for 137 wheat micro-core collections. J Chin Cereals Oils Assoc, 2010, 25(10): 19–23 (in Chinese with English abstract)



[22]Barreto H J, Edmeades G O, Chapman S C, Crossa J. The alpha lattice design in plant breeding and agronomy: Generation and analysis. In: Edmeades, G. O, M Banziger, H R Mickelson, C B Peña-Valdivia (eds). Developing Drought- and Low N-Tolerant Maize. Proceedings of a Symposium. Mexico, D.F.: CIMMYT, 1997. pp 544–551



[23]Wyss M, Pasamontes L, Friedlein A, Rémy R, Tessier M, Kronenberger A, Middendorf A, Lehmann M, Schnoebelen L, Röthlisberger U, Kusznir E, Wahl G, Müller F, Lahm H W, Vogel K, van Loon A P. Biophysical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl Environ Microb, 1999, 65: 359–366



[24]张勇, 吴振录, 张爱民, Maarten van Ginkel, 何中虎. CIMMYT小麦在中国春麦区的适应性分析. 中国农业科学, 2006, 39: 655–663



Zhang Y, Wu Z L, Zhang A M, Maarten van Ginkel, He Z H. Adaptation of CIMMYT wheat germplasm in China's spring wheat regions. Sci Agric Sin, 2006, 39: 655–663 (in Chinese with English abstract)



[25]Ward J H. Hierarchical grouping to optimize an objective function. J Am Stat Assoc, 1963, 58: 236–244



[26]Liu Z H, Wang H Y, Wang X E, Zhang G P, Chen P D, Liu D J. Phytase activity, phytate, iron, and zinc contents in wheat pearling fractions and their variation across production locations. J Cereal Sci, 2007, 45: 319–326



[27]Kim J C, Mullan B P, Selle P H, Pluske J R. Levels of total phosphorus, phytate phosphorus and phytase activity in three varieties of Western Australian wheats in response to growing region, growing season and storage. Aust J Agric Res, 2002, 53: 1361–1366

[1] 靳义荣, 刘金栋, 刘彩云, 贾德新, 刘鹏, 王雅美. 普通小麦氮素利用效率相关性状全基因组关联分析[J]. 作物学报, 2021, 47(3): 394-404.
[2] 张平平,姚金保,王化敦,宋桂成,姜朋,张鹏,马鸿翔. 江苏省优质软麦品种品质特性与饼干加工品质的关系[J]. 作物学报, 2020, 46(4): 491-502.
[3] 杨芳萍,刘金栋,郭莹,贾奥琳,闻伟鄂,巢凯翔,伍玲,岳维云,董亚超,夏先春. 普通小麦‘Holdfast’条锈病成株抗性QTL定位[J]. 作物学报, 2019, 45(12): 1832-1840.
[4] 安建刚,敬夫,丁祎,肖怡,尚浩浩,李宏利,杨晓璐,唐道彬,王季春. 氮肥分期运筹对套作甘薯产量、品质及氮素效率的影响[J]. 作物学报, 2018, 44(12): 1858-1866.
[5] 王林生,张雅莉,南广慧. 普通小麦-大赖草易位系T5AS-7LrL·7LrS分子细胞遗传学鉴定[J]. 作物学报, 2018, 44(10): 1442-1447.
[6] 赵德辉, 张勇, 王德森, 黄玲, 陈新民, 肖永贵, 阎俊, 张艳, 何中虎. 北方冬麦区新育成优质品种的面包和馒头品质性状[J]. 作物学报, 2018, 44(05): 697-705.
[7] 苗永杰, 阎俊, 赵德辉, 田宇兵, 闫俊良, 夏先春, 张勇, 何中虎. 黄淮麦区小麦主栽品种粒重与籽粒灌浆特性的关系[J]. 作物学报, 2018, 44(02): 260-267.
[8] 肖永贵,Susanne DREISIGACKER,Claudia NU?EZ-RíOS,胡卫国,夏先春,何中虎. 基于FLUOstar平台的小麦dsDNA荧光定量与基因型分析[J]. 作物学报, 2017, 43(07): 947-953.
[9] 董雪,刘梦,赵献林,冯玉梅,杨燕. 普通小麦近缘种低分子量麦谷蛋白亚基Glu-A3基因的分离和鉴定[J]. 作物学报, 2017, 43(06): 829-838.
[10] 刘凯,邓志英,张莹,王芳芳,刘佟佟,李青芳,邵文,赵宾,田纪春*,陈建省*. 小麦茎秆断裂强度相关性状QTL的连锁和关联分析[J]. 作物学报, 2017, 43(04): 483-495.
[11] 宫希,蒋云峰,徐彬杰,乔媛媛,华诗雨,吴旺,马建,周小鸿,祁鹏飞,兰秀锦. 利用普通六倍体小麦和西藏半野生小麦杂交衍生的重组自交系定位小麦芒长QTL[J]. 作物学报, 2017, 43(04): 496-500.
[12] 王鑫,马莹雪,杨阳,王丹峰,殷慧娟,王洪刚. 小麦矮秆种质SN224的鉴定及农艺性状QTL分析[J]. 作物学报, 2016, 42(08): 1134-1142.
[13] 孔欣欣,张艳,赵德辉,夏先春,王春平,何中虎. 北方冬麦区新育成优质小麦品种面条品质相关性状分析[J]. 作物学报, 2016, 42(08): 1143-1159.
[14] 刘凯,邓志英,李青芳,张莹,孙彩铃,田纪春*,陈建省*. 利用高密度SNP 遗传图谱定位小麦穗部性状基因[J]. 作物学报, 2016, 42(06): 820-831.
[15] 李文爽,夏先春,何中虎. 普通小麦类胡萝卜素组分的超高效液相色谱分离方法[J]. 作物学报, 2016, 42(05): 706-713.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!