欢迎访问作物学报,今天是

作物学报 ›› 2014, Vol. 40 ›› Issue (02): 320-328.doi: 10.3724/SP.J.1006.2014.00320

• 耕作栽培·生理生化 • 上一篇    下一篇

北方水稻生育后期剑叶可溶性物质含量及植株生产力对CO2浓度增高的响应

王惠贞1,赵洪亮1,冯永祥2,姜乐1,宁大可1,谢立勇1,*,林而达3,*   

  1. 1沈阳农业大学农学院, 辽宁沈阳 110866;2 黑龙江八一农垦大学农学院, 黑龙江大庆 163319;3 中国农业科学院农业环境与可持续发展研究所, 北京 100081
  • 收稿日期:2013-05-15 修回日期:2013-08-31 出版日期:2014-02-12 网络出版日期:2013-11-14
  • 通讯作者: 谢立勇, E-mail: xly0910@163.com; Tel: 024-88487135; 林而达, lined@ami.ac.cn,Tel: 010-82105998
  • 基金资助:

    本研究由国家自然科学基金项目(41175097)和国家科技支撑计划项目(2013BAD11B03)资助。

Response of Soluble Substances Content in Flag Leaves during Late Growth Stage and Plant Productivity of Rice to Elevated CO2 in North China

WANG Hui-Zhen1,ZHAO Hong-Liang1,FENG Yong-Xiang2,JIANG Le1,NING Da-Ke1,XIE Li-Yong1,*,LIN Er-Da3,*   

  1. 1 College of Agronomy, Shenyang Agricultural University, Shenyang 110866, China; 2 College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China; 3 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China?
  • Received:2013-05-15 Revised:2013-08-31 Published:2014-02-12 Published online:2013-11-14
  • Contact: 谢立勇, E-mail: xly0910@163.com; Tel: 024-88487135; 林而达, lined@ami.ac.cn,Tel: 010-82105998

摘要:

以高产优质粳稻松粳9号和稻花香2号为试材, 利用中国北方FACE (free air CO2 enrichment)实验平台研究北方水稻生理代谢对CO2浓度增高的响应规律。在水稻抽穗期开始测定剑叶可溶性糖含量、蛋白质含量和总叶绿素含量, 收获后实测小区产量及产量构成因素, 比较处理间和品种间差异。结果表明, CO2浓度增高显著提高水稻抽穗期、乳熟期和完熟期剑叶可溶性糖含量, 松粳9号和稻花香2号最高增幅分别达11.7%47.5%CO2浓度增高显著降低抽穗期和完熟期剑叶可溶性蛋白含量, 松粳9号和稻花香2号最大降幅分别为16.2%10.5%CO2浓度增高使抽穗期和乳熟期剑叶总叶绿素含量显著增加, 松粳9号和稻花香2号最大增幅达18.9%22.5%, 之后便逐渐降低。CO2浓度增高使松粳9号单株籽粒产量、生物学产量、经济系数分别提高6.82%1.50%12.64%, 稻花香2号平均升高2.56%2.13%26.05%。研究表明CO2浓度增高最终提高了水稻植株生产力, 对可溶性物质含量的影响在不同生育期存在差异。这可能由于大气CO2浓度增高促进水稻生长发育, 导致水稻提早成熟, 叶片衰老促进了可溶性糖分解, 也加快了功能叶可溶性蛋白向籽粒运输速率。

关键词: FACE, 水稻, 生育后期, 可溶性糖, 可溶性蛋白质, 叶绿素, 植株生产力

Abstract:

The responses of high yield and good quality japonica varieties Songjing 9 and Daohuaxiang 2 to elevated CO2 concentration in North China were studied by using FACE experimental system. The soluble sugar content, soluble protein content and total chlorophyll content in flag leaves of rice were measured at late growth stage, rice yield per plot and yield components were measured at harvest stage. The results showed that elevated CO2 concentration increased soluble sugar content in flag leaf for Songjing 9 and Daohuaxiang 2 obviously during heading stage, milky stage and ripening stage, with the peak value of 11.7% and 47.5%, respectively. Elevated CO2 concentration obviously reduced soluble protein content in flag leaf during heading stage and ripening stage for Songjing 9 and Daohuaxiang 2, which was 16.2% and 10.5% in the largest reduction, respectively. Elevated CO2 concentration obviously increased total chlorophyll content in flag leaf for Songjing 9 and Daohuaxiang 2 from heading stage to milky stage, with the largest increase of 18.9% and 22.5%, and then decreased after milk stage. Elevated CO2 concentration increased seed yield of individual plant, total biomass and economic coefficient with an average of 6.82%, 1.50%, 12.64% for Songjing 9, and 2.56%, 2.13%, 26.05% for Daohuaxiang 2. The results indicated that elevated atmospheric CO2 concentration increases rice plant productivity, but with diffrence effects on soluble sugar, soluble protein and chlorophyll in flag leaf of different rice varieties at different growth stages. The reason is likely that is elevated atmospheric CO2 concentration promotes rice growth and development, leading to a early maturity, then senescent leaf promotes soluble sugar’s decomposition, and speeds up transportation of soluble protein from function leaf to seeds.

Key words: FACE, Rice, Late growth stage, Soluble sugar, Soluble protein, Chlorophyll, Plant productivity

[1]Seneweera S, Makino A, Hirotsu N, Norton R, Suzuki Y. New insight into photosynthetic acclimation to elevated CO2: The role of leaf nitrogen and ribulose-1,5-bisphosphate carboxylase / oxygenase content in rice leaves. Environ Exp Bot, 2011, 71: 128–136

[2]Wang Y X, Michael F, Song Q L, Yang L X. The impact of atmospheric CO2 concentration enrichment on rice quality—A research review. Acta Ecol Sin, 2011, 31: 277–282

[3]Fukayama H, Sugino M, Fukuda T, Masumoto C, Taniguchi Y, Okada M, Sameshima R, Hatanaka T, Misoo S, Hasegawa T, Miyao M. Gene expression profiling of rice grown in free air CO2 enrichment (FACE) and elevated soil temperature. Field Crops Res, 2011, 121: 195–199

[4]IPCC. Climate Change, 2007: Impacts, Adaptation and Vulnerability. Geneva, Switzerland: IPCC Secretariat, 2007

[5]房世波, 沈斌, 谈凯炎, 高西宁. 大气CO2和温度升高对农作物生理及生产的影响. 中国生态农业学报, 2010, 18: 1116–1124

Fang S B, Shen B, Tan K Y, Gao X N. Effect of elevated CO2 concentration and increased temperature on physiology and production of crops. Chin J Eco-Agric, 2010, 18: 1116–1124 (in Chinese with English abstract) 

[6]王润佳, 高世铭, 张绪成. 高大气CO2浓度下C3植物叶片水分利用效率升高的研究进展. 干旱地区农业研究, 2010, 28(6): 190–195

Wang R J, Gao S M, Zhang X C. The physiological mechanism of the increment of C3 plant leaf water use efficiency under high atmospheric CO2 condition. Agric Res Arid Areas, 2010, 28(6): 190–195 (in Chinese with English abstract)  

[7]黄建晔, 杨洪建, 杨连新, 刘红江, 董桂春, 朱建国, 王余龙. 开放式空气CO2浓度增加(FACE)对水稻产量形成的影响及其与氮的互作效应. 中国农业科学, 2004, 37: 1824–1830

Huang J Y, Yang H J, Yang L X, Liu H J, Dong G C, Zhu J G, Wang Y L. Effects of free-air CO2 enrichment (FACE) on yield formation of rice and its interaction with nitrogen. Sci Agric Sin, 2004, 37: 1824–1830 (in Chinese with English abstract) 

[8]杨连新, 王云霞, 朱建国, 王余. 十年水稻FACE研究的产量响应. 生态学报, 2009, 29(3): 1486–1497

Yang L X, Wang Y X, Zhu J G, Wang Y L. What have we learned from 10 years of Free Air CO2 Enrichment (FACE) experiments on rice? CO2 and grain yield. Acta Ecol Sin, 2009, 29: 1486–1497 (in Chinese with English abstract)

[9]范桂芝, 蔡庆生, 王春明, 万建民, 朱建国. 水稻株高性状对大气CO2浓度升高的响应. 作物学报, 2007, 33: 433–440

Fan G Z, Cai Q S, Wang C M, Wan J M, Zhu J G. Response of plant height to free air CO2 enrichment in rice. Acta Agron Sin, 2007, 33: 433–440 (in Chinese with English abstract)

[10]黄建晔, 杨洪建, 董桂春, 王余龙, 朱建国, 杨连新, 单玉华. 开放式空气CO2 浓度增高对水稻产量形成的影响. 应用生态学报, 2002, 13: 1210–1214

Huang J Y, Yang H J, Dong G C, Wang Y L, Zhu J G, Yang L X, Shan Y H. Effects of free-air CO2 enrichment (FACE) on yield formation in rice (Oryza sativa L.). Chin J Appl Ecol, 2002, 13(10): 1210–1214 (in Chinese with English abstract)

[11]杨洪建, 杨连新, 刘红江, 黄建晔, 董桂春, 朱建国, 王余龙. FACE 对水稻根系及产量的影响. 作物学报, 2005, 31: 1221–1226

Yang H J, Yang L X, Liu H J, Huang J Y, Dong G C, Zhu J G, Wang Y L. Effects of free-air CO2 enrichment (FACE) on root system and its relations with yield in rice (Oryza sativa L.). Acta Agron Sin, 2005, 31: 1221–1226 (in Chinese with English abstract)

[12]杨连新, 王余龙, 黄建晔, 杨洪建, 刘红江. 开放式空气CO2浓度增高对水稻生长发育影响的研究进展. 应用生态学报, 2006, 17: 1331–1337

Yang L X, Wang Y L, Huang J Y, Yang H J, Liu H J. Responses of rice growth and development to free-air CO2 enrichment (FACE): A research review. Chin J Appl Ecol, 2006, 17: 1331–1337 (in Chinese with English abstract)

[13]Kim H Y, Lieffering M, Kobayashi K, Okada M, Mitchell M W, Gumpertz M. Effects of free-air CO2 enrichment and nitrogen supply on the yield of temperate paddy rice crops. Field Crops Res, 2003, 83: 261–270

[14]Leakey A D, Ainsworth E A, Bernacchi C J, Rogers A, Long S P, Ort D R. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot, 2009, 28: 1–18

[15]Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim H Y, Kobayashi K. Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytologist, 2001, 150: 251–260

[16]郝兴宇, 林而达, 杨锦忠, 居辉, 马占云, 韩雪, 王贺然, 杨万深. 自由大气CO2浓度升高对夏大豆生长与产量的影响. 生态学报, 2009, 29: 4595–4603

Hao X Y, Lin E D, Yang J Z, Ju H, Ma Z Y, Han X, Wang H R, Yang W S. Effects of free air CO2 enrichment (FACE) on growth and yield of summer soybean. Acta Ecol Sin, 2009, 29: 4595–4603 (in Chinese with English abstract)

[17]张志良, 瞿伟菁. 植物生理学实验指导(第3版). 北京: 高等教育出版社, 2005. pp 67–159

Zhang Z L, Zhai W J. The Guidance of Plant Physiology Experiments, 3rd edn. Beijing: Higher Education Press, 2005. pp 67–159 (in Chinese)

[18]谢立勇, 林而达, 孙芳, 赵海燕. 全生育期二氧化碳与温度处理对水稻生理性状的影响初报. 中国农业大学学报, 2006, 11(1): 17–21

Xie L Y, Lin E D, Sun F, Zhao H Y. Effects of CO2 enrichment and temperature increase during growth duration on physiological characteristics of rice. J China Agric Univ, 2006, 11(1): 17–21 (in Chinese with English abstract)

[19]胡健, 王余龙, 杨连新, 周娟, 朱建国. FACE对武香粳14 各生育期功能叶片及根系可溶蛋白含量的影响. 农业环境科学学报, 2006, 25: 1117–1121

Hu J, Wang Y L, Yang L X, Zhou J, Zhu J G. Effect of free-air CO2 enrichment (FACE) on concentrations of soluble protein in functional leaves and roots of japonica rice (Oryza sativa L.) cultivar Wuxianjing 14. J Agro-Environt Sci, 2006, 25: 1117–1121 (in Chinese with English abstract)

[20]刘贞琦, 刘振业, 马达鹏, 曾淑芬. 水稻叶绿素含量及其与光合速率关系的研究. 作物学报, 1984, 10: 57–61

Liu Z Q, Liu Z Y, Ma D P, Zeng S F. A study on the relation between chlorophyll content and photosynthetic rate of rice. Acta Agron Sin, 1984, 10: 57–61 (in Chinese with English abstract)

[21]金松恒, 蒋德安, 王品美, 赵凯, 翁晓燕. 水稻孕穗期不同叶位叶片的气体交换与叶绿素荧光特性. 中国水稻科学, 2004, 18: 443–448

Jin S H, Jiang D A, Wang P M, Zhao K, Weng X Y. Characteristics of gas exchange and chlorophyll fluorescence in different position leaves at booting stage in rice plants. Chin J Rice Sci, 2004, 18: 443–448 (in Chinese with English abstract)

[22]童汉华, 梅捍卫, 邢永忠, 曹一平, 余新桥, 章善庆, 罗利军. 水稻生育后期剑叶形态和生理特性的QTL定位. 中国水稻科学, 2007, 21: 493–499

Tong H H, Mei H W, Xing Y Z, Cao Y P, Yu X Q, Zhang S Q, Luo L J. QTL analysis for morphological and physiological characteristics of flag leaf at the late developmental stage in rice. Chin J Rice Sci, 2007, 21: 493–499 (in Chinese with English abstract)

[23]Imai K, Mae T, Suzuki Y, Makino A, Mae T. Effects of nitrogen nutrition on the relationships between the levels of rbcS and rbcL mRNAs and the amount of ribulose 1,5-bisphosphate carboxylase/oxygenase synthesized in the eighth leaves of rice from emergence through senescence. Plant Cell Environ, 2005, 28: 1589–1600

[24]胡健, 杨连新, 周娟, 王余龙, 朱建国. 开放式空气CO2浓度增高和施氮量对水稻结实期叶片内肽酶活力的影响. 中国水稻科学, 2008, 22: 155–160

Hu J, Yang L X, Zhou J, Wang Y L, Zhu J G. Effect of free air CO2 enrichment (FACE) and nitrogen level on endopeptidase activities in rice leaves during grain filling stage. Chin J Rice Sci, 2008, 22: 155–160 (in Chinese with English abstract)

[25]王贺正, 马均, 李旭毅, 李艳, 张荣萍, 汪仁全. 水分胁迫对水稻结实期一些生理性状的影响. 作物学报, 2006, 32: 1892–1897

Wang H Z, Ma J, Li X Y, Li Y, Zhang R P, Wang R Q. Effects of water stress on some physiological characteristics in rice during grain filling stage. Acta Agron Sin, 2006, 32: 1892–1897 (in Chinese with English abstract)

[26]彭长连, 林植芳, 林桂珠. 加富CO2条件下水稻叶片抗氧化能力的变化. 作物学报, 1999, 25: 39–43

Peng C L, Lin Z F, Lin G Z. Changes of antioxidative ability in leaves of rice cultivars grown under enriched CO2. Acta Agron Sin, 1999, 25: 39–43 (in Chinese with English abstract)

[27]彭晓邦, 张硕新. 大气CO2浓度升高对植物某些生理过程影响的研究进展. 西北林学院学报, 2006, 21(1): 68–71

Peng X B, Zhang S X. Research progress in effects of increased atmospheric CO2 concentration on certain physiological process of plants. J Northwest For Univ, 2006, 21(1): 68–71 (in Chinese with English abstract)

[28]刘少华, 陈国祥, 胡艳, 吕川根, 吴国荣, 杨艳华. 高产杂交稻“两优培九”功能叶抗氧化系统对水分胁迫的响应. 作物学报, 2004, 30: 1244–1249

Liu S H, Chen G X, Hu Y, Lü C G, Wu G R, Yang Y H. Effects of water stress on the antioxidant system in mature leaves of hybrid rice “Liangyoupeijiu”. Acta Agron Sin, 2004, 30: 1244–1249 (in Chinese with English abstract)

[29]Kimball1 B A, 朱建国, 程磊, Kobayashi K, Bindi M. 开放系统中农作物对空气CO2浓度增加的响应. 应用生态学报, 2002, 13: 1323–1338

Kimball B A, Zhu J G, Cheng L, Kobayashi K, Bindi M. Responses of agricultural crops to free air CO2 enrichment. Chin J Appl Ecol, 2002, 13: 1323–1338 (in Chinese with English abstract)

[30]Kim H Y, Lieffering M, Kobayashi K, Okada M, Miura S. Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: a free air CO2 enrichment (FACE) experiment. Global Change Biol, 2003, 9: 826–837

[31]黄建晔, 董桂春, 杨洪建, 王余龙, 朱建国, 杨连新, 单玉华. 开放式空气CO2 增高对水稻物质生产与分配的影响. 应用生态学报, 2003, 14: 253–257

Huang J Y, Dong G C, Yang H J, Wang Y L, Zhu J G, Yang L X, Shan Y H. Effects of free-air CO2 enrichment on biomass accumulation and distribution in rice. Chin J Appl Ecol, 2003, 14: 253–257 (in Chinese with English abstract)

[1] 田甜, 陈丽娟, 何华勤. 基于Meta-QTL和RNA-seq的整合分析挖掘水稻抗稻瘟病候选基因[J]. 作物学报, 2022, 48(6): 1372-1388.
[2] 郑崇珂, 周冠华, 牛淑琳, 和亚男, 孙伟, 谢先芝. 水稻早衰突变体esl-H5的表型鉴定与基因定位[J]. 作物学报, 2022, 48(6): 1389-1400.
[3] 周文期, 强晓霞, 王森, 江静雯, 卫万荣. 水稻OsLPL2/PIR基因抗旱耐盐机制研究[J]. 作物学报, 2022, 48(6): 1401-1415.
[4] 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436.
[5] 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475.
[6] 杨建昌, 李超卿, 江贻. 稻米氨基酸含量和组分及其调控[J]. 作物学报, 2022, 48(5): 1037-1050.
[7] 杨德卫, 王勋, 郑星星, 项信权, 崔海涛, 李生平, 唐定中. OsSAMS1在水稻稻瘟病抗性中的功能研究[J]. 作物学报, 2022, 48(5): 1119-1128.
[8] 朱峥, 王田幸子, 陈悦, 刘玉晴, 燕高伟, 徐珊, 马金姣, 窦世娟, 李莉云, 刘国振. 水稻转录因子WRKY68在Xa21介导的抗白叶枯病反应中发挥正调控作用[J]. 作物学报, 2022, 48(5): 1129-1140.
[9] 王小雷, 李炜星, 欧阳林娟, 徐杰, 陈小荣, 边建民, 胡丽芳, 彭小松, 贺晓鹏, 傅军如, 周大虎, 贺浩华, 孙晓棠, 朱昌兰. 基于染色体片段置换系群体检测水稻株型性状QTL[J]. 作物学报, 2022, 48(5): 1141-1151.
[10] 王泽, 周钦阳, 刘聪, 穆悦, 郭威, 丁艳锋, 二宫正士. 基于无人机和地面图像的田间水稻冠层参数估测与评价[J]. 作物学报, 2022, 48(5): 1248-1261.
[11] 陈悦, 孙明哲, 贾博为, 冷月, 孙晓丽. 水稻AP2/ERF转录因子参与逆境胁迫应答的分子机制研究进展[J]. 作物学报, 2022, 48(4): 781-790.
[12] 王吕, 崔月贞, 吴玉红, 郝兴顺, 张春辉, 王俊义, 刘怡欣, 李小刚, 秦宇航. 绿肥稻秆协同还田下氮肥减量的增产和培肥短期效应[J]. 作物学报, 2022, 48(4): 952-961.
[13] 巫燕飞, 胡琴, 周棋, 杜雪竹, 盛锋. 水稻延伸因子复合体家族基因鉴定及非生物胁迫诱导表达模式分析[J]. 作物学报, 2022, 48(3): 644-655.
[14] 陈云, 李思宇, 朱安, 刘昆, 张亚军, 张耗, 顾骏飞, 张伟杨, 刘立军, 杨建昌. 播种量和穗肥施氮量对优质食味直播水稻产量和品质的影响[J]. 作物学报, 2022, 48(3): 656-666.
[15] 王琰, 陈志雄, 姜大刚, 张灿奎, 查满荣. 增强叶片氮素输出对水稻分蘖和碳代谢的影响[J]. 作物学报, 2022, 48(3): 739-746.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!