Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2017, Vol. 43 ›› Issue (11): 1575-1587.doi: 10.3724/SP.J.1006.2017.01575


Development and Application of High Resolution Karyotypes of Chinese Spring Aneuploids

WANG Dan-Rui1,DU Pei1,PEI Zi-You2,ZHUANG Li-Fang1,*,QI Zeng-Jun1,*   

  1. 1State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; 2 Crop Science Institute, Shanxi Academy of Agricultural Sciences, Taiyuan 030031, China
  • Received:2017-03-06 Revised:2017-07-23 Online:2017-11-12 Published:2017-08-11
  • Contact: 亓增军, E-mail: zjqi@njau.edu.cn; 庄丽芳, E-mail: lfzhuang@njau.edu.cn E-mail:2014101112@njau.edu.cn
  • Supported by:

    This study was supported by the National Natural Science Foundation of China (31370385) and Institute Director Foundation of Shanxi Academy of Agricultural Sciences for Youth (yydzx09).


Oligonucleotide (oligo hereafter) multiplex-based chromosome painting facilitates chromosome identification of both wheat cultivars and its relatives in a simple, easy and high efficient way. In this study, an oligo multiplex containing oligos pAs1-1, pAs1-3, AFA-4, (GAA)10, and pSc119.2-1 developed earlierwas used for chromosome painting of 18 accessions from 17 Chinese Spring (CS) aneuploids. The high resolution karyotypes allowed to clearly distinguish individualwheat chromosomes. Fourteen aneuploidshad theexpected chromosome constitutions whereasthe other four had chromosome variations including one witha possible small segmental reciprocal translocation T6AS·6AL-6DL and T6DS·6DL-6AL occurred in N5BT5D. The following analysis on eightlandraces,ninecultivars (lines), and one synthetic hexaploid wheat, observed karyotypediversities from 15 chromosomes including six B- (except for 4B), five A- (except for 1A and 3A), and four D-genome (1D, 2D, 4D, and 7D) chromosomes. The three widely-used translocations in China, i.e. T1BL·1RS, T6AL·6VS and the reciprocal translocation T1RS·7DL and T7DS·1BL, were clearly detected after only oncefluorescence in situ hybridization(FISH) using the oligo multiplex and without genomic in situ hybridization (GISH). This oligo multiplex also produced rich signals in all chromosomes of Triticum monococum, rye cultivar ‘Jingzhouheimai’, durum wheat ‘Langdon’, and Thinopyrum elongatum, and 30 chromosomes of Thinopyrum intermedium. The karyotypes of these five species were thus developed. These results indicate that oligo multiplex-based chromosome painting will play active roles on chromosome identifying, and provide a reference for the standard karyotypes of CS aneuploids.

Key words: Oligonucleotide multiplex probe, Chromosome painting, Chromosome diversity, Wheat translocations, Aneuploids

[1] Tack J, Barkley A, Nalley L L. Effect of warming temperatures on US wheat yields. Proc Natl Acad Sci USA, 2015, 112: 6931–6936
[2] Liu B, Asseng S, Müller C, Ewert F, Elliott J, Lobell D B, Martre P, Ruane A C, Wallach D, Jones J W, Rosenzweig C, Aggarwal P K, Alderman P D, Anothai J, Basso B, Biernath C, Cammarano D, Challinor A, Deryng D, De Sanctis G, Doltra J, Fereres E, Folberth C, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt L A, Izaurralde R C, Jabloun M, Jones C D, Kersebaum K C, Kimball B A, Koehler A K, Kumar S N, Nendel C, O’Leary G J, Olesen J E, Ottman M J, Palosuo T, Vara Prasad P V, Priesack E, Pugh T A M, Reynolds M, Rezaei E E, Rötter R P, Schmid E, Semenov M A, Shcherbak I, Stehfest E, Stöckle C O, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn P, Waha K, Wall G W, Wang E, White J W, Wolf J, Zhao Z, Zhu Y.. Similar estimates of temperature impacts on global wheat yield by three independent methods. NatClimat Change, 2016, 6: 1130–1136
[3] Chan Simon W L. Chromosome engineering: power tools for plant genetics. Trends Biotechnol, 2010, 28: 605–610
[4] Jiang J M, Friebe B, Gill B S. Recent advances in alien gene transfer in wheat. Euphytica, 1994, 73: 199–212
[5] Cao A Z, Xing L P, Wang X Y, Yang X M, Wang W, Sun Y L, Qian C, Ni J L, Chen Y P, Liu D J, Wang X, Chen P D. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011, 108: 7727–7732
[6] Endo T R, Gill B S. The deletion stocks of common wheat. J Hered, 1996, 87: 295–307
[7] Zheng Q, Li B, Mu S M, Zhou H P, Li Z S. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome, 2006, 49:1109–1114
[8] Nasuda S, Hudakova S, Schubert I,Endo T R. Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA, 2005, 102: 9842–9847
[9] Friebe B, Kynast R G, Gill B S. Gametocidal factor-induced structural rearrangements in rye chromosomes added to common wheat. Chrom Res, 2000, 8: 501–511
[10] Gyawali Y P, Nasuda S, Endo T R. Cytological dissection and molecular characterization of chromosome 1R derived from ‘Burgas 2’ common wheat. Genes Genet Syst, 2009, 84: 407–416
[11] Zhuang L F, Liu P, Liu Z Q, Chen T T, Wu N, Sun L, Qi Z J. Multiple structural aberrations and physical mapping of rye chromosome 2R introgressed into wheat. Mol Breed, 2015, 35: 133
[12] Chen P D, You C F, Hu Y, Chen S W, Zhou B, Cao A Z, Wang X. Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breed, 2013, 31:477–484
[13] Zhang R Q, Hou F, Feng Y G, Zhang W. Zhang M Y, Chen P D. Characterization of a Triticum aestivum–Dasypyrum villosum T2VS•2DL translocation line expressing a longer spike and more kernels traits. Theor Appl Genet, 2015, 128: 2415–2425
[14] Sepsi A, Molnár I, Szalay D, Molnár-Láng M. Characterization of a leaf rust-resistant wheat–Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor Appl Genet, 2008, 116: 825–834
[15] Mahelka V, Kopeck D, Baum B R. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Mol Biol Evol, 2013, 30:2065–2086
[16] Danilova T V, Zhang G., Liu W X,Friebe B,Gill B S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theor Appl Genet, 2017, 130: 549–556
[17] Rey M D, Calderón M C, Prieto P. The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley. Front Plant Sci, 2015, 6: 160
[18] Song L Q, Lu Y Q, Zhang J P, Pan C L, Yang X M, Li X Q, Liu W H, Li, L H. Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet, 2016, 129: 1023–1034
[19] Li H H, Jiang B, Wang J C, Lu Y Q, Zhang J P, Pan C L, Yang X M, Li X Q, Liu W H, Li L H. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theor Appl Genet, 2017, 130: 109–121
[20] Qi Z J, Du P, Qian B L, Zhuang L F, Chen H F, Chen T T, Shen J, Guo J, Feng Y G, Pei Z Y. Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS•2BL) translocation line. Theor Appl Genet, 2010, 121: 589–597
[21] Pu J, Wang Q, Shen Y F, Zhuang L F, Li C X, Tan M F, Bie T D, Chu C G, Qi Z J. Physical mapping of chromosome 4J of Thinopyrum bessarabicum using gamma radiation-induced aberrations. Theor Appl Genet, 2015, 128: 1319–1328
[22] Badaeva E D, Dedkova O S, Koenig J, Bernard S, Bernard M . Analysis of introgression of Aegilops ventricosa Tausch. genetic material in a common wheat background using C-banding. Theor Appl Genet, 2008, 117: 803–811
[23] Niu Z X, Klindworth D L, Friesen T L, Chao S M, Jin Y, Cai X W, Xu S S. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics, 2011, 187: 1011–1021
[24] Liu W X, Koo DH, Xia Q, Li C X, Bai F Q, Song Y L, Friebe B, Gill B S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor Appl Genet,2017, DOI 10.1007/s00122-017-2855-y
[25] Ishii T, Ueda T, Tanaka H, Hisashi T. Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells. Chrom Res, 2010, 18: 821–831
[26] Endo T R. The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chrom Res, 2007, 15: 67–75
[27] Bie T D, Cao Y P, Chen P D. Mass production of intergeneric chromosomal translocations through pollen irradiation of Triticum durum–Haynaldia villosa amphiploid. J Integr Plant Biol, 2007, 49: 1619–1626
[28] Ma X H, Wang Q, Wang Y Z, Ma J Y, Wu N, Ni S,Luo T X, Zhuang L F, Chu C G, Cho S W,Tsujimoto H, Qi ZJ.Chromosome aberrations induced by zebularine in triticale. Genome, 2016, 59: 485–492
[29] Tiwari V K, Heesacker A, Riera-Lizarazu O, Gunn H, Wang S C, Wang Y, Gu Y Q, Paux E, Koo D H, Kumar A, Luo M C, Lazo G, Zemetra R, Akhunov E, Friebe B, Poland J, Gill B S, Kianian S, Leonard J M. A whole-genome, radiation hybrid mapping resource of hexaploid wheat. Plant J, 2016, 86: 195–207
[30] 张学勇, 马琳, 郑军. 作物驯化和品种改良所选择的关键基因及其特点. 作物学报, 2017, 43: 157–170
Zhang X Y, Ma L, Zheng J. Characteristics of genes selected by domestication and intensive breeding in crop plants. Acta Agron Sin, 2017, 43: 171–178 (in Chinese with English abstract)
[31] Cuadrado Á, Golczyk H, Jouve N. A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential use and possible target structures detected. Chrom Res, 2009, 17: 755–762
[32] Cuadrado Á, Jouve N. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma, 2010, 119: 495–503
[33] Matera A G, Ward D C. Oligonucleotide probes for the analysis of specific repetitive DNA sequences by fluorescence in situ hybridization. Hum Mol Genet, 1992, 1: 535–539
[34] Moodie S L, Thornton J M. A study into the effects of protein binding on nucleotide conformation. Nucl Acids Res, 1993, 21: 1369–1380
[35] Cuadrado A, Cardoso M, Jouve N. Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res, 2008, 120: 210–219
[36] Beliveau B J, Joyce E F, Apostolopoulos N, Yilmaz F, Fonseka C Y, McCole R B, Chang Y, Li J B, Senaratne T N, Williams B R, Rouillard J M, Wu C T. Versatile design and synthesis platform for visualizing genomes with oligopaint FISH probes. Proc Natl Acad Sci USA, 2012, 109: 21301-21306
[37] Miks-Krajnik M, Babuchowski A.16S rRNA-targeted oligonucleotide probes for direct detection of Propionibacterium freudenreichii in presence of Lactococcus lactis with multicolour fluorescence in situ hybridization. Lett Appl Microbiol, 2014, 59: 320–327
[38] 王艳芝.百萨偃麦草染色体小片段易位的诱致、鉴定与基因定位分析. 南京农业大学硕士学位论文, 江苏南京, 2013
Wang Y Z. Development and Characterization of Small Segment Translocations of Thinopyrum bessarabicum and Cytological Mapping of Interest Genes. MSThesis of Nanjing Agricultural University, Nanjing, China. 2013 (in Chinese with English abstract)
[39] Tang Z X, Yang Z J, Fu S L. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. JAppl Genet, 2014, 55: 313–318
[40] Han Y H, Zhang T, Thammapichai P, Weng Y Q, Jiang J M. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics, 2015, 200: 771–779
[41] Fu S L, Chen L, Wang Y Y, Li M, Yang Z J, Qiu L, Yan B J, Ren Z L, Tang Z X. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep, 2015, 5: 10552
[42] Tang S Y, Qiu L, Xiao Z Q, Fu S L, Tang Z X. New oligonucleotide probes for ND-FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes. Genes, 2016, 7: 118
[43] Du P, Zhuang L F, Wang Y Z, Yuan L, Wang Q, Wang D R, Dawadondup, Tan L J, Shen J, Xu H B, Zhao H, Chu C G, Qi Z J. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome, 2017, 60: 93–103
[44] Zhu M Q, Du P, Zhuang L F, Chu C G, Zhao H, Qi Z J. A simple and efficient non-denaturing FISH method for maize chromosome differentiation using single-strand oligonucleotide probes. Genome. 2017, 60: 657–664
[45] 刘振乾. 荆州黑麦染色体变异体的诱致与鉴定.南京农业大学硕士学位论文,江苏南京, 2012
Liu Z Q. Development and Identification of Chromosome Variations of Secale cereale cv. Jingzhouheimai. MSThesis of Nanjing Agricultural University, Nanjing, China, 2012 (in Chinese with English abstract)
[46] Dolezel J, Cihalikova J, Lucretti S. A high yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba. Planta, 1992,188:93–98
[47] Dolezel J, Cihalikova J, Weiserova J, Lucretti S. Cell cycle synchronization in plant root meristems. Methods Cell Sci, 1999, 21: 95–107
[48] Jiang J M, Gill B S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 2006, 49: 1057–1068
[49] Gill B S, Friebe B, Endo T R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberration in wheat (Triticum aestivum). Genome, 1991, 34: 830–839
[50] Chen P D, Qi L L, Zhou B, Zhang S Z, and Liu D J. Development and molecular cytogenetic analysis of wheat–H. villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91: 1125–1128
[51] Qi Z J, Chen P D, Liu D J, Li Q Q. A new secondary reciprocal translocation discovered in Chinese wheat. Euphytica, 2004, 137: 333–338
[52] 庄丽芳, 亓增军, 孙玲, 李爱霞, 陈华锋, 王从磊, 达瓦顿珠, 冯祎高, 裴自友. 衍生于“矮孟牛Ⅴ”与92R137的小麦新品系南农1258的系统鉴定. 麦类作物学报, 2008, 28: 387–392
Zhuang L F, Qi Z J, Sun L, Li A X, Chen H F, Wang C L, Dawadondup, Feng Y G, Pei Z Y. Identification of a new wheat line Nannong 1258 derived from wheat germplasm Aimengniu V and 92R137. J Triticeae Crops, 2008, 28: 387–392 (in Chinese with English abstract)

No related articles found!
Full text



No Suggested Reading articles found!