[1] Tack J, Barkley A, Nalley L L. Effect of warming temperatures on US wheat yields. Proc Natl Acad Sci USA, 2015, 112: 6931–6936
[2] Liu B, Asseng S, Müller C, Ewert F, Elliott J, Lobell D B, Martre P, Ruane A C, Wallach D, Jones J W, Rosenzweig C, Aggarwal P K, Alderman P D, Anothai J, Basso B, Biernath C, Cammarano D, Challinor A, Deryng D, De Sanctis G, Doltra J, Fereres E, Folberth C, Garcia-Vila M, Gayler S, Hoogenboom G, Hunt L A, Izaurralde R C, Jabloun M, Jones C D, Kersebaum K C, Kimball B A, Koehler A K, Kumar S N, Nendel C, O’Leary G J, Olesen J E, Ottman M J, Palosuo T, Vara Prasad P V, Priesack E, Pugh T A M, Reynolds M, Rezaei E E, Rötter R P, Schmid E, Semenov M A, Shcherbak I, Stehfest E, Stöckle C O, Stratonovitch P, Streck T, Supit I, Tao F, Thorburn P, Waha K, Wall G W, Wang E, White J W, Wolf J, Zhao Z, Zhu Y.. Similar estimates of temperature impacts on global wheat yield by three independent methods. NatClimat Change, 2016, 6: 1130–1136
[3] Chan Simon W L. Chromosome engineering: power tools for plant genetics. Trends Biotechnol, 2010, 28: 605–610
[4] Jiang J M, Friebe B, Gill B S. Recent advances in alien gene transfer in wheat. Euphytica, 1994, 73: 199–212
[5] Cao A Z, Xing L P, Wang X Y, Yang X M, Wang W, Sun Y L, Qian C, Ni J L, Chen Y P, Liu D J, Wang X, Chen P D. Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat. Proc Natl Acad Sci USA, 2011, 108: 7727–7732
[6] Endo T R, Gill B S. The deletion stocks of common wheat. J Hered, 1996, 87: 295–307
[7] Zheng Q, Li B, Mu S M, Zhou H P, Li Z S. Physical mapping of the blue-grained gene(s) from Thinopyrum ponticum by GISH and FISH in a set of translocation lines with different seed colors in wheat. Genome, 2006, 49:1109–1114
[8] Nasuda S, Hudakova S, Schubert I,Endo T R. Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci USA, 2005, 102: 9842–9847
[9] Friebe B, Kynast R G, Gill B S. Gametocidal factor-induced structural rearrangements in rye chromosomes added to common wheat. Chrom Res, 2000, 8: 501–511
[10] Gyawali Y P, Nasuda S, Endo T R. Cytological dissection and molecular characterization of chromosome 1R derived from ‘Burgas 2’ common wheat. Genes Genet Syst, 2009, 84: 407–416
[11] Zhuang L F, Liu P, Liu Z Q, Chen T T, Wu N, Sun L, Qi Z J. Multiple structural aberrations and physical mapping of rye chromosome 2R introgressed into wheat. Mol Breed, 2015, 35: 133
[12] Chen P D, You C F, Hu Y, Chen S W, Zhou B, Cao A Z, Wang X. Radiation-induced translocations with reduced Haynaldia villosa chromatin at the Pm21 locus for powdery mildew resistance in wheat. Mol Breed, 2013, 31:477–484
[13] Zhang R Q, Hou F, Feng Y G, Zhang W. Zhang M Y, Chen P D. Characterization of a Triticum aestivum–Dasypyrum villosum T2VS•2DL translocation line expressing a longer spike and more kernels traits. Theor Appl Genet, 2015, 128: 2415–2425
[14] Sepsi A, Molnár I, Szalay D, Molnár-Láng M. Characterization of a leaf rust-resistant wheat–Thinopyrum ponticum partial amphiploid BE-1, using sequential multicolor GISH and FISH. Theor Appl Genet, 2008, 116: 825–834
[15] Mahelka V, Kopeck D, Baum B R. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Mol Biol Evol, 2013, 30:2065–2086
[16] Danilova T V, Zhang G., Liu W X,Friebe B,Gill B S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of a wheat streak mosaic virus and Triticum mosaic virus resistance gene Wsm3 from Thinopyrum intermedium to wheat. Theor Appl Genet, 2017, 130: 549–556
[17] Rey M D, Calderón M C, Prieto P. The use of the ph1b mutant to induce recombination between the chromosomes of wheat and barley. Front Plant Sci, 2015, 6: 160
[18] Song L Q, Lu Y Q, Zhang J P, Pan C L, Yang X M, Li X Q, Liu W H, Li, L H. Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor Appl Genet, 2016, 129: 1023–1034
[19] Li H H, Jiang B, Wang J C, Lu Y Q, Zhang J P, Pan C L, Yang X M, Li X Q, Liu W H, Li L H. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P. Theor Appl Genet, 2017, 130: 109–121
[20] Qi Z J, Du P, Qian B L, Zhuang L F, Chen H F, Chen T T, Shen J, Guo J, Feng Y G, Pei Z Y. Characterization of a wheat-Thinopyrum bessarabicum (T2JS-2BS•2BL) translocation line. Theor Appl Genet, 2010, 121: 589–597
[21] Pu J, Wang Q, Shen Y F, Zhuang L F, Li C X, Tan M F, Bie T D, Chu C G, Qi Z J. Physical mapping of chromosome 4J of Thinopyrum bessarabicum using gamma radiation-induced aberrations. Theor Appl Genet, 2015, 128: 1319–1328
[22] Badaeva E D, Dedkova O S, Koenig J, Bernard S, Bernard M . Analysis of introgression of Aegilops ventricosa Tausch. genetic material in a common wheat background using C-banding. Theor Appl Genet, 2008, 117: 803–811
[23] Niu Z X, Klindworth D L, Friesen T L, Chao S M, Jin Y, Cai X W, Xu S S. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics, 2011, 187: 1011–1021
[24] Liu W X, Koo DH, Xia Q, Li C X, Bai F Q, Song Y L, Friebe B, Gill B S. Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor Appl Genet,2017, DOI 10.1007/s00122-017-2855-y
[25] Ishii T, Ueda T, Tanaka H, Hisashi T. Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: pearl millet chromosome dynamics in hybrid embryo cells. Chrom Res, 2010, 18: 821–831
[26] Endo T R. The gametocidal chromosome as a tool for chromosome manipulation in wheat. Chrom Res, 2007, 15: 67–75
[27] Bie T D, Cao Y P, Chen P D. Mass production of intergeneric chromosomal translocations through pollen irradiation of Triticum durum–Haynaldia villosa amphiploid. J Integr Plant Biol, 2007, 49: 1619–1626
[28] Ma X H, Wang Q, Wang Y Z, Ma J Y, Wu N, Ni S,Luo T X, Zhuang L F, Chu C G, Cho S W,Tsujimoto H, Qi ZJ.Chromosome aberrations induced by zebularine in triticale. Genome, 2016, 59: 485–492
[29] Tiwari V K, Heesacker A, Riera-Lizarazu O, Gunn H, Wang S C, Wang Y, Gu Y Q, Paux E, Koo D H, Kumar A, Luo M C, Lazo G, Zemetra R, Akhunov E, Friebe B, Poland J, Gill B S, Kianian S, Leonard J M. A whole-genome, radiation hybrid mapping resource of hexaploid wheat. Plant J, 2016, 86: 195–207
[30] 张学勇, 马琳, 郑军. 作物驯化和品种改良所选择的关键基因及其特点. 作物学报, 2017, 43: 157–170
Zhang X Y, Ma L, Zheng J. Characteristics of genes selected by domestication and intensive breeding in crop plants. Acta Agron Sin, 2017, 43: 171–178 (in Chinese with English abstract)
[31] Cuadrado Á, Golczyk H, Jouve N. A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential use and possible target structures detected. Chrom Res, 2009, 17: 755–762
[32] Cuadrado Á, Jouve N. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH). Chromosoma, 2010, 119: 495–503
[33] Matera A G, Ward D C. Oligonucleotide probes for the analysis of specific repetitive DNA sequences by fluorescence in situ hybridization. Hum Mol Genet, 1992, 1: 535–539
[34] Moodie S L, Thornton J M. A study into the effects of protein binding on nucleotide conformation. Nucl Acids Res, 1993, 21: 1369–1380
[35] Cuadrado A, Cardoso M, Jouve N. Physical organisation of simple sequence repeats (SSRs) in Triticeae: structural, functional and evolutionary implications. Cytogenet Genome Res, 2008, 120: 210–219
[36] Beliveau B J, Joyce E F, Apostolopoulos N, Yilmaz F, Fonseka C Y, McCole R B, Chang Y, Li J B, Senaratne T N, Williams B R, Rouillard J M, Wu C T. Versatile design and synthesis platform for visualizing genomes with oligopaint FISH probes. Proc Natl Acad Sci USA, 2012, 109: 21301-21306
[37] Miks-Krajnik M, Babuchowski A.16S rRNA-targeted oligonucleotide probes for direct detection of Propionibacterium freudenreichii in presence of Lactococcus lactis with multicolour fluorescence in situ hybridization. Lett Appl Microbiol, 2014, 59: 320–327
[38] 王艳芝.百萨偃麦草染色体小片段易位的诱致、鉴定与基因定位分析. 南京农业大学硕士学位论文, 江苏南京, 2013
Wang Y Z. Development and Characterization of Small Segment Translocations of Thinopyrum bessarabicum and Cytological Mapping of Interest Genes. MSThesis of Nanjing Agricultural University, Nanjing, China. 2013 (in Chinese with English abstract)
[39] Tang Z X, Yang Z J, Fu S L. Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. JAppl Genet, 2014, 55: 313–318
[40] Han Y H, Zhang T, Thammapichai P, Weng Y Q, Jiang J M. Chromosome-specific painting in Cucumis species using bulked oligonucleotides. Genetics, 2015, 200: 771–779
[41] Fu S L, Chen L, Wang Y Y, Li M, Yang Z J, Qiu L, Yan B J, Ren Z L, Tang Z X. Oligonucleotide probes for ND-FISH analysis to identify rye and wheat chromosomes. Sci Rep, 2015, 5: 10552
[42] Tang S Y, Qiu L, Xiao Z Q, Fu S L, Tang Z X. New oligonucleotide probes for ND-FISH analysis to identify barley chromosomes and to investigate polymorphisms of wheat chromosomes. Genes, 2016, 7: 118
[43] Du P, Zhuang L F, Wang Y Z, Yuan L, Wang Q, Wang D R, Dawadondup, Tan L J, Shen J, Xu H B, Zhao H, Chu C G, Qi Z J. Development of oligonucleotides and multiplex probes for quick and accurate identification of wheat and Thinopyrum bessarabicum chromosomes. Genome, 2017, 60: 93–103
[44] Zhu M Q, Du P, Zhuang L F, Chu C G, Zhao H, Qi Z J. A simple and efficient non-denaturing FISH method for maize chromosome differentiation using single-strand oligonucleotide probes. Genome. 2017, 60: 657–664
[45] 刘振乾. 荆州黑麦染色体变异体的诱致与鉴定.南京农业大学硕士学位论文,江苏南京, 2012
Liu Z Q. Development and Identification of Chromosome Variations of Secale cereale cv. Jingzhouheimai. MSThesis of Nanjing Agricultural University, Nanjing, China, 2012 (in Chinese with English abstract)
[46] Dolezel J, Cihalikova J, Lucretti S. A high yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba. Planta, 1992,188:93–98
[47] Dolezel J, Cihalikova J, Weiserova J, Lucretti S. Cell cycle synchronization in plant root meristems. Methods Cell Sci, 1999, 21: 95–107
[48] Jiang J M, Gill B S. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 2006, 49: 1057–1068
[49] Gill B S, Friebe B, Endo T R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberration in wheat (Triticum aestivum). Genome, 1991, 34: 830–839
[50] Chen P D, Qi L L, Zhou B, Zhang S Z, and Liu D J. Development and molecular cytogenetic analysis of wheat–H. villosa 6VS/6AL translocation lines specifying resistance to powdery mildew. Theor Appl Genet, 1995, 91: 1125–1128
[51] Qi Z J, Chen P D, Liu D J, Li Q Q. A new secondary reciprocal translocation discovered in Chinese wheat. Euphytica, 2004, 137: 333–338
[52] 庄丽芳, 亓增军, 孙玲, 李爱霞, 陈华锋, 王从磊, 达瓦顿珠, 冯祎高, 裴自友. 衍生于“矮孟牛Ⅴ”与92R137的小麦新品系南农1258的系统鉴定. 麦类作物学报, 2008, 28: 387–392
Zhuang L F, Qi Z J, Sun L, Li A X, Chen H F, Wang C L, Dawadondup, Feng Y G, Pei Z Y. Identification of a new wheat line Nannong 1258 derived from wheat germplasm Aimengniu V and 92R137. J Triticeae Crops, 2008, 28: 387–392 (in Chinese with English abstract) |