Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2020, Vol. 46 ›› Issue (4): 484-490.doi: 10.3724/SP.J.1006.2020.94112

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Development of novel peanut genotypes with resistance to bacterial wilt disease, large pod, and high shelling percentage

LI Wei-Tao,XU Zhi-Jun,CAI Yan,GUO Jian-Bin,YU Bo-Lun,HUANG Li,CHEN Yu-Ning,ZHOU Xiao-Jing,LUO Huai-Yong,LIU Nian,CHEN Wei-Gang,REN Xiao-Ping,JIANG Hui-Fang()   

  1. Oil Crops Research Institute, China Academy of Agricultural Sciences / Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, Hubei, China
  • Received:2019-08-04 Accepted:2019-12-26 Online:2020-04-12 Published:2020-01-15
  • Contact: Hui-Fang JIANG E-mail:peanutlab@oilcrops.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(31601340);This study was supported by the National Natural Science Foundation of China(31571713);This study was supported by the National Natural Science Foundation of China(31761143005);This study was supported by the National Natural Science Foundation of China(31461143022)

Abstract:

Bacterial wilt is an important soil-borne bacterial disease effecting yield and quality of peanut. Hundred pod weight and shelling percentage are also related to peanut yield. In this study, the major QTL qBWRB02 related to bacterial wilt resistance was identified by using the RIL population derived from the cross between Yuanza 9102 and Xuzhou 68-4. Combining with the QTL mapping results for shelling percentage and hundred pod weight in previous research, it was found that the major QTL for these three traits were distributed on different chromosomes. Based on genotype data of RIL population and phenotypic data of bacterial wilt resistance, hundred pod weight and shelling percentage in multi-environment, We screened out six novel accessions with resistance to bacterial wilt disease, large pod, and high shelling percentage from RIL population by molecular markers closely linked with major QTL, which can be used as breeding intermediates or parents in peanut breeding for high yield and high disease resistance. The results of effectively screening disease-resistant and high-yield germplasm through the combination of molecular marker-assisted selection and phenotypic identification provide a new idea for peanut breeding in the future.

Key words: novel peanut genotype, bacterial wilt diseases resistance, hundred pod weight, shelling percentage

Table 1

Information of QTLs for resistance to bacterial wilt (BWR) using QTLNetwork 2.0"

QTL名称
QTL name
环境
Environment
范围
Range (cM)
加性效应
Additive effect
贡献率
PVE (%)
(A)
贡献率
PVE (%)
(AE)
qBWRA01.1 2013HA 17.4-18.7 -9.5732 16.57
qBWRA01.2 ME 17.4-18.7 -6.16 8.77 0.52
(qBWRA01)
qBWRB02.1 2013HA 91.5-92.5 -15.95 21.45
qBWRB02.2 2014NC 91.5-92.5 -19.51 27.76
qBWRB02.3 2015NC 91.5-92.5 -21.18 45.21
qBWRB02.4 ME 91.5-92.5 -18.44 27.87 0.22
(qBWRB02)
qBWRB05 ME 4.5-8.5 5.66 2.54 0.79
qBWRB10.1 2013HA 87.9-98.9 -14.79 8.36
qBWRB10.2 2015NC 87.9-101.9 -11.81 6.49
qBWRB10.3 ME 90.9-100.9 -10.30 3.80 0.35
(qBWRB10)

Fig. 1

Location of QTLs for BWR in the genetic maps QTL surrounded by rectangle represents major QTL."

Table 2

Genotypes of AHGS2344 in breeding lines and cultivars with different resistance to bacterial wilt"

材料 Material 亲本 Parent AHGS2344 表型 Phenotype
远杂9102 Yuanza 9102 A 抗 Resistant
中花21 Zhonghua 21 远杂9102 Yuanza 9102 A 抗 Resistant
J8 远杂9102 Yuanza 9102 A 抗 Resistant
J11 远杂9102 Yuanza 9102 A 抗 Resistant
J64 远杂9102 Yuanza 9102 A 抗 Resistant
J91 远杂9102 Yuanza 9102 A 抗 Resistant
J92 远杂9102 Yuanza 9102 A 抗 Resistant
J12 远杂9102 Yuanza 9102 B 不抗 Susceptible
中花6号 Zhonghua 6 A 抗 Resistant
QT1319 中花6号Zhonghua 6 A 抗 Resistant
QT1315 中花6号Zhonghua 6 A 抗 Resistant
QT1299 中花6号Zhonghua 6 B 不抗 Susceptible
QT1322 中花6号Zhonghua 6 B 不抗 Susceptible
QT1306 中花6号Zhonghua 6 B 不抗 Susceptible
QT1314 中花6号Zhonghua 6 B 不抗 Susceptible
徐花13 Xuhua 13 B 不抗 Susceptible
徐州68-4 Xuzhou 68-4 B 不抗 Susceptible

Table 3

Novel genotypes with resistance to bacterial wilt disease, large pod and high shelling percentage selected by molecular markers tightly linked to QTL"

家系
Line
青枯病抗性(qBWB02)
Resistance to bacterial wilt (qBWB02)
百果重(qHPWA05)
Hundred pod weight (qHPWA05)
出仁率(qSPA09)
Shelling percentage (qSPA09)
AhTE0775 AHGS2344 均值
Mean (%)
AD05A20499 Ad05A20262 均值
Mean (g)
AGGS0957 GNB652 均值
Mean (%)
QT0718 A A 81.89 B B 239.09 A A 81.77
QT0719 A A 80.36 B B 257.07 A A 80.19
QT0748 A A 92.88 B B 238.22 A A 83.68
QT0752 A A 94.89 B B 228.44 A A 79.41
QT0793 A A 88.10 B B 235.49 A A 81.63
QT0845 A A 88.89 B B 222.45 A A 80.83
徐州68-4
Xuzhou 68-4
B B 20.00 B B 251.84 B B 76.93
远杂9102
Yuanza 9102
A A 89.80 A A 187.43 A A 81.84
[1] 中国统计年鉴2017. .
China Statistical Yearbook 2017. (in Chinese).
[2] Luo H, Pandey M K, Khan A W, Guo J, Wu B, Cai Y, Huang L, Zhou X, Chen Y, Chen W, Liu N, Lei Y, Liao B, Varshney R K, Jiang H . Discovery of genomic regions and candidate genes controlling shelling percentage using QTL-seq approach in cultivated peanut (Arachis hypogaea L.). Plant Biotechnol J, 2018. doi: 10.1111/pbi.13050.
[3] 王耀波, 张艺兵, 张鹏, 门爱军 . 入世后中国花生产业发展前景及促进出口的对策. 花生学报, 2003,32(S1):24-29.
Wang Y B, Zhang Y B, Zhang P, Men A J . Development prospect of peanut industry in China and measures to promote exports after entering WTO. J Peanut Sci, 2003,32(S1):24-29 (in Chinese).
[4] 雷永, 王圣玉, 李栋, 姜慧芳, 廖伯寿 . 花生抗青枯病种质对黄曲霉菌产毒的抗性反应. 中国油料作物学报, 2004,26:69-71.
Lei Y, Wang S Y, Li D, Jiang H F, Liao B S . Evaluation of resistance to aflatoxin production among peanut germplasm with resistance to bacterial wilt. Chin J Oil Crop Sci, 2004,26:69-71 (in Chinese with English abstract).
[5] 姜慧芳, 任小平, 雷永, 廖伯寿, Mace E, Crouch J H . 花生青枯病抗性分子标记的初步研究. 花生学报, 2003,32(S1):319-323.
Jiang H F, Ren X P, Lei Y, Liao B S, Mace E, Crouch J H . Preliminary study on molecular markers of resistance to peanut bacterial wilt. J Peanut Sci, 2003,32(S1):319-323 (in Chinese).
[6] 肖达人, 王圣玉, 瞿桢, 张洪玲 . 花生抗黄曲霉毒素污染研究进展. 花生科技, 1999, ( S1):124-129.
Xiao D R, Wang S Y, Qu Z, Zhang H L . Recent advances of resistance to aflatoxin contamination in peanut. Peanut Sci Technol, 1999, ( S1):124-129 (in Chinese).
[7] Gomes R L F, Lopes  C D A . Correlations and path analysis in peanut. Crop Breed Appl Biotechnol, 2005,5:105-112.
[8] Selvaraj M G, Narayana M, Schubert A M, Ayers J L, Baring M R, Burow M D . Identification of QTLs for pod and kernel traits in cultivated peanut by bulked segregant analysis. Electron J Biotechnol, 2009,12:1-10.
[9] 陈本银, 姜慧芳, 廖伯寿, 任小平 . 中国花生青枯病抗性遗传改良研究进展. 中国农学通报, 2007,23(8):369-372.
Chen B Y, Jiang H F, Liao B S, Ren X P . Progress on groundnut genetic enhancement for bacterial wilt resistance. Chin Agric Sci Bull, 2007,23(8):369-372 (in Chinese with English abstract).
[10] 姜慧芳, 任小平, 廖伯寿, 傅廷栋 . 抗青枯病花生资源的种子大小及主要品质性状的遗传分化. 中国油料作物学报, 2006,28:144-150.
Jiang H F, Ren X P, Liao B S, Fu T D . Genetic diversity of peanut genotypes with resistance to bacterial wilt based on seed characters. Chin J Oil Crop Sci, 2006,28:144-150 (in Chinese with English abstract).
[11] 王亚琦, 孙子淇, 郑峥, 黄冰艳, 董文召, 汤丰收, 张新友 . 作物分子标记辅助选择育种的现状与展望. 江苏农业科学, 2018,46(5):6-12.
Wang Y Q, Sun Z Q, Zheng Z, Huang B Y, Dong W Z, Tang F S, Zhang X Y . Current situation and prospect of crop molecular marker-assisted selection breeding. Jiangsu Agric Sci, 2018,46(5):6-12 (in Chinese).
[12] 姜慧芳, 陈本银, 任小平, 廖伯寿, 雷永, 傅廷栋, 马朝芝, Mace E, Crouch J H . 利用重组近交系群体检测花生青枯病抗性SSR标记. 中国油料作物学报, 2007,29:26-30.
Jiang H F, Chen B Y, Ren X P, Liao B S, Lei Y, Fu T D, Ma C Z, Mace E, Crouch J H . Identification of SSR markers linked to bacterial wilt resistance of peanut with RILs. Chin J Oil Crop Sci, 2007,29:26-30 (in Chinese with English abstract).
[13] 彭文舫, 姜慧芳, 任小平, 吕建伟, 赵新燕, 黄莉 . 花生AFLP遗传图谱构建及青枯病抗性QTL分析. 华北农学报, 2010,25(6):81-86.
Peng W F, Jiang H F, Ren X P, Lyu J W, Zhao X Y, Huang L . Construction of AFLP genetic linkage map and detection of QTLs for bacterial wilt resistance in peanut (Arachis hypogaea L.). Acta Agric Boreali-Sin, 2010,25(6):81-86 (in Chinese with English abstract).
[14] 任小平 . 花生青枯病抗性的分子标记研究. 中国农业科学院硕士学位论文, 北京, 2005.
Ren X P . A Study on Molecular Marker for Resistance to Bacterial Wilt in Peanut (Arachis hypogaea L.). MS Thesis of Chinese Academy of Agricultural Sciences, Beijing, China, 2005 (in Chinese with English abstract).
[15] Wang L, Zhou X, Ren X, Huang L, Luo H, Chen Y, Chen W, Liu N, Liao B, Lei Y, Yan L, Shen J, Jiang H . A major and stable QTL for bacterial wilt resistance on chromosome B02 identified using a high-density SNP-based genetic linkage map in cultivated peanut Yuanza 9102 derived population. Front Genet, 2018,9:652.
[16] Luo H, Pandey M K, Khan A W, Wu B, Guo J, Ren X, Zhou X, Chen Y, Chen W, Huang L, Liu N, Lei Y, Liao B, Varshney R K, Jiang H . Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.). Plant Biotechnol J, 2019,17:2356-2369
[17] Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R, Zhuang W . Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. Plant Biotechnol J, 2016,15:39-55.
[18] Zhang C, Chen H, Zhuang R, Chen Y, Deng Y, Cai T, Wang S, Liu Q, Tang R, Shan S, Pan R, Chen L, Zhuang W . Overexpression of the peanut CLAVATA1-like leucine-rich repeat receptor-like kinase AhRLK1, confers increased resistance to bacterial wilt in tobacco. J Exp Bot, 2019,70:5407-5421.
[19] Fonceka D, Tossim H A, Rivallan R, Vignes H, Faye I, Ndoye O, Moretzsohn M C, Bertioli D J, Glaszmann C, Courtois B, Rami J F . Fostered and left behind alleles in peanut: interspecific QTL mapping reveals footprints of domestication and useful natural variation for breeding. BMC Plant Biol, 2012,12:26.
[20] Luo H, Ren X, Li Z, Xu Z, Li X, Huang L, Zhou X, Chen Y, Chen W, Lei Y, Liao B, Pandey M K, Varshney R K, Guo B, Jiang X, Liu F, Jiang H . Co-localization of major quantitative trait loci for pod size and weight to a 3.7 cM interval on chromosome A05 in cultivated peanut (Arachis hypogaea L.). BMC Genomics, 2017,18:58.
[21] 李振动, 李新平, 黄莉, 任小平, 陈玉宁, 周小静, 廖伯寿, 姜慧芳 . 栽培种花生荚果大小相关性状QTL定位. 作物学报, 2015,41:1313-1323.
Li Z D, Li X P, Huang L, Ren X P, Chen Y N, Zhou X J, Liao B S, Jiang H F . Mapping of QTLs for pod size related traits in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2015,41:1313-1323 (in Chinese with English abstract).
[22] Huang L, He H, Chen W, Ren X, Chen Y, Zhou X, Xia Y, Wang X, Jiang X, Liao B, Jiang H . Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2015,128:1103-1115.
[23] Chen Y, Ren X, Zheng Y, Zhou X, Huang L, Yan L, Jiao Y, Chen W, Huang S, Wan L, Lei Y, Liao B, Huai D, Wei W, Jiang H . Genetic mapping of yield traits using RIL population derived from Fuchuan Dahuasheng and ICG6375 of peanut (Arachis hypogaea L.). Mol Breed, 2017,37:17.
[24] 蔡岩, 徐志军, 李振动, 李新平, 郭建斌, 任小平, 黄莉, 陈伟刚, 陈玉宁, 周小静, 罗怀勇, 姜慧芳 . 花生出仁率QTL分析及其与荚果大小的相关性. 作物学报, 2017,43:701-707.
Cai Y, Xu Z J, Li Z D, Li X P, Guo J B, Ren X P, Huang L, Chen W G, Chen Y N, Zhou X J, Luo H Y, Jiang H F . Quantitative trait locus analysis for shelling percentage and correlation between shelling percentage and pod size related traits in Arachis hypogaea. Acta Agron Sin, 2017,43:701-707 (in Chinese with English abstract).
[25] 周小静, 董洋, 张芳, 任小平, 陈玉宁, 黄莉, 陈伟刚, 廖伯寿, 雷永, 晏立英, 罗怀勇, 姜慧芳 . 利用SNP标记高密度遗传图谱进行花生出仁率QTL定位. 中国油料作物学报, 2016,38:750-756.
Zhou X J, Dong Y, Zhang F, Ren X P, Chen Y N, Huang L, Chen W G, Liao B S, Lei Y, Yan L Y, Luo H Y, Jiang H F . QTL mapping of shelling percentage using SNP-based high density genetic map in cultivated peanut. Chin J Oil Crop Sci, 2016,38:750-756 (in Chinese with English abstract).
[26] Luo H, Xu Z, Li Z, Li X, Lv J, Ren X, Huang L, Zhou X, Chen Y, Yu J, Chen W, Lei Y, Liao B, Jiang H . Development of SSR markers and identification of major quantitative trait loci controlling shelling percentage in cultivated peanut (Arachis hypogaea L.). Theor Appl Genet, 2017,130:1635-1648.
[27] 陈伟刚, 郭建斌, 徐志军, 喻博伦, 邱西克, 黄莉, 宋延滨, 陈玉宁, 周小静, 罗怀勇, 刘念, 任小平, 姜慧芳 . 花生出仁率和株高的QTL定位分析. 作物学报, 2018,44:42-51.
Chen W G, Guo J B, Xu Z J, Yu B L, Qiu X K, Huang L, Song Y B, Chen Y N, Zhou X J, Luo H Y, Liu N, Ren X P, Jiang H F . QTL Mapping for shelling percentage and plant height in cultivated peanut (Arachis hypogaea L.). Acta Agron Sin, 2018,44:42-51 (in Chinese with English abstract).
[28] Yang J, Hu C, Hu H, Yu R, Xia Z, Ye X, Zhu J . QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics, 2008,24:721-723.
[29] 任小平, 姜慧芳, 廖伯寿 . 花生抗青枯病分子标记研究. 植物遗传资源学报, 2008,9:163-167.
Ren X P, Jiang H F, Liao B S . Identification of molecular markers for resistance to bacterial wilt in peanut (Arachis hypogeea L.). J Plant Genet Resour, 2008,9:163-167 (in Chinese with English abstract).
[1] Wei-Gang CHEN,Jian-Bin GUO,Zhi-Jun XU,Bo-Lun YU,Xi-Ke QIU,Li HUANG,Yan-Bin SONG,Yu-Ning CHEN,Xiao-Jing ZHOU,Huai-Yong LUO,Nian LIU,Xiao-Ping REN,Hui-Fang JIANG. QTL Mapping for Shelling Percentage and Plant Height in Cultivated Peanut (Arachis hypogaea L.) [J]. Acta Agronomica Sinica, 2018, 44(8): 1142-1151.
[2] CAI Yan,XU Zhi-Jun,LI Zhen-Dong,LI Xin-Ping,GUO Jian-Bin,REN Xiao-Ping,HUANG Li,CHEN Wei-Gang,CHEN Yu-Ning,ZHOU Xiao-Jing,LUO Huai-Yong,JIANG Hui-Fang* . Quantitative Trait Locus Shelling Percentage and Correlation Between Shelling Percentage with Pod Traits in Cultivated Peanut (A. hypogaea L.) [J]. Acta Agron Sin, 2017, 43(05): 701-707.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!