Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Effects of side deep placement of controlled release nitrogen management on rice yield, NH3, and greenhouse gas emissions

GUO Song1, GUO Hui-Ting2, ZHANG Yu-Liang2, QIAN Zi-Hui2, WANG Zi-Jun1, LU Jia-Ming2, WANG Yuan2, ZHAO Can2, WANG Wei-Ling2, ZHANG Hong-Cheng2, YANG Feng-Ping1,*, HUO Zhong-Yang2,*   

  1. 1 Department of Animal Behavior, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China; 2 Jiangsu Province Key Laboratory of Crop Genetics and Physiology, Yangzhou 225009, Jiangsu, China
  • Received:2023-09-13 Revised:2024-01-31 Accepted:2024-01-31 Published:2024-02-27
  • Supported by:
    This study was supported by the Jiangsu Province Agricultural Science and Technology Independent Innovation Fund Project [CX(22)1001] and the Jiangsu Province Carbon Peak Carbon Neutral Science and Technology Innovation Special Fund Project (BE2022424).

Abstract:

The objective of this study is to establish controlled-release nitrogen fertilization technology for achieving high yield and reduce carbon emissions. Two late-maturing medium japonica rice varieties, Nanjing 9108 and Taixiangjing 1402, were selected in this study. The controlled-release fertilizer with resin-coated urea (N 43%, the longevity was 100 d) and common urea (46% N) were used as nitrogen fertilizers. Different ratios of basal and panicle nitrogen fertilizers were set for different treatments of 10:0 (NM1), 8:2 (NM2), 7:3 (NM3), and 6:4 (NM4). The basal fertilizer was applied using the side-deep fertilization method, with a ratio of 5:5 for resin-coated urea and common urea. The panicle nitrogen fertilizer was common urea. Conventional fertilization (FFT) and no nitrogen fertilizer (0N) control treatments were also included. The effect of different nitrogen fertilizer application methods on rice yield, NH3 volatilization, and greenhouse gas emissions were investigated. The results showed that the side-deep application of controlled-release nitrogen fertilizer delayed the peak of NH3 volatilization, preventing it from occurring at tillering stage compared to the FFT treatment. In addition, the flux of NH3 volatilization and the average flux after topdressing were significantly reduced by the side-deep application of controlled-release nitrogen fertilizer. The NH3 emission accumulation, NH3 emission factor, and NH3 emission intensity were reduced by 25.33%–48.76%, 29.14%–60.81%, and 29.60%–56.01%, respectively. Furthermore, the CH4 emission fluxes were significantly reduced at tillering stage and after heading stage. The N2O emission fluxes were also significantly reduced during the shelving and heading period. The CH4 and N2O emission accumulation were reduced by 20.20%–55.04% and 25.56%–61.56%, respectively. The CH4 emission reduction rate decreased as the proportion of basal and panicle fertilizer decreased. The N2O emission reduction rate followed the order of NM1 > NM3 > NM2 > NM4. The GWP and GHGI were reduced by 20.96%–53.35% and 25.91%–55.40%, respectively. Considering the economic and ecological benefits, NM1 treatment had the best effect on the reduction of NH3 volatilization and greenhouse gas emissions. NM1 treatment reduced the number of fertilization times 1–2 compared with the NM3 and FFT treatments, which was advantageous for achieving green, simple, and large-scale rice production. NM3 treatment exhibited the highest increase in yield, and its impact on reducing NH3 volatilization and greenhouse gas emissions was second only to NM1 treatment. In summary, the present study explored a set of controlled-release nitrogen fertilization method (NM1 and NM3 focused on 'light and simple + emission reduction' and 'high yield + emission reduction', respectively) suitable for reducing emission and increasing yield of late-maturing medium japonica rice.

Key words: controlled-release nitrogen fertilizer, fertilization technology, NH3 volatilization, CH4, N2O, emission reduction

[1] 严圣吉, 邓艾兴, 尚子吟, 唐志伟, 陈长青, 张俊, 张卫建. 我国作物生产碳排放特征及助力碳中和的减排固碳途径. 作物学报, 2022, 48: 930–941.

Yan S J, Deng A X, Shang Z Y, Tang Z W, Chen C Q, Zhang J, Zhang W J. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China's crop production. Acta Agron Sin, 2022, 48: 930–941 (in Chinese with English abstract).

[2] Michelozzi P, De' Donato F. IPCC Sixth Assessment Report: stopping climate change to save our planet. Epidemiol Prev, 2021, 45: 227–229.

[3] 蔡延江, 丁维新, 项剑. 农田土壤N2ONO排放的影响因素及其作用机制. 土壤, 2012, 44: 881–887.

Cai Y J, Ding W X, Xiang J. Factors controlling N2O and NO emissions from agricultural soils and their influencing mechanisms. Soils, 2012, 44: 881–887 (in Chinese with English abstract).

[4] Linquist B, van Groenigen K J, Adviento-Borbe M A, Pittelkow C, van Kessel C. An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Chang Biol, 2012, 18: 194–209.

[5] Heffer P, Gruère A, Roberts T. Assessment of Fertilizer Use by Crop at the Global Level. Paris, France: International Fertilizer Industry Association, 2013.

[6] 张惠, 杨正礼, 罗良国, 张晴雯, 易军, 杨世琦, 陈媛媛, 王明. 黄河上游灌区稻田N2O排放特征. 生态学报, 2011, 31: 6606–6615.

Zhang H, Yang Z L, Luo L G, Zhang J W, Yi J, Yang S Q, Chen Y Y, Wang M. The feature of N2O emission from a paddy field in irrigation area of the Yellow River. Acta Ecol Sin, 2011, 31: 6606–6615 (in Chinese with English abstract).

[7] Behera S N, Sharma M, Aneja V P, Balasubramanian R. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environ Sci Pollut Res Int, 2013, 20: 8092–8131.

[8] Izquieta R S, López A M, Irigoyen J J, Santamaría J M, Santamaría C, Lasheras E, Ochoa H R, Elustondo D. Eco-physiological response of hypnum cupressiforme hedw. to increased atmospheric ammonia concentrations in a forest agrosystem. Sci Total Environ, 2018, 619–620: 883–895.

[9] Pan Y, Tian S, Zhao Y, Zhang L, Zhu X, Gao J, Huang W, Zhou Y, Song Y, Zhang Q, Wang Y. Identifying ammonia hot spots in China using a national observation network. Environ Sci Technol, 2018, 52: 3926–3934.

[10] 王书伟, 林静慧, 吴正贵, 陈吉, 潘云俊, 盛雪雯. 氮肥深施对太湖地区稻田氨挥发的影响. 中国生态农业学报, 2021, 29: 2002–2012.

Wang S W, Lin J H, Wu Z G, Chen J, Pan Y J, Sheng X W. The effects of nitrogen fertilizer deep placement on the ammonia volatilization from paddy fields in the Taihu Lake region of China. Chin J Eco-Agric, 2021, 29: 2002–2012 (in Chinese with English abstract).

[11] 肖其亮, 朱坚, 彭华, 简燕, 纪雄辉. 秸秆与缓控释肥配施对双季稻田氨挥发的控制效果农业环境科学学报, 2021, 40: 2788–2800.

Xiao Q L, Zhu J, Peng H, Jian Y, Ji X H. Effects of controlled release fertilizer combined with rice straw on ammonia volatilization from double-cropping rice fields. J Agro-Environ Sci, 2021, 40: 2788–2800 (in Chinese with English abstract).

[12] 彭世彰, 杨士红, 徐俊增. 节水灌溉稻田氨挥发损失及影响因素. 农业工程学报, 2009, 25(8): 35–39.

Peng S Z, Yang S H, Xu J Z. Ammonia volatilization and its influence factors of paddy field under water-saving irrigation. Trans CSAE, 2009, 25(8): 35–39 (in Chinese with English abstract).

[13] 张文学, 孙刚, 何萍, 梁国庆, 王秀斌, 刘光荣, 周卫. 脲酶抑制剂与硝化抑制剂对稻田氨挥发的影响. 植物营养与肥料学报, 2013: 1411–1419.

Zhang W X, Sun G, He P, Liang G Q, Wang X B, Liu G R, Zhou W. Effects of urease and nitrification inhibitors on ammonia volatilization from paddy fields. J Plant Nutr Fert, 2013: 1411–1419 (in Chinese with English abstract).

[14] 陈苇, 卢婉芳, 段彬伍, Wassmann R, Lantin R S. 稻草还田对晚稻稻田甲烷排放的影响. 土壤学报, 2002, 39: 170–176.

Chen W, Lu W F, Duan B W, Wassmann R, Lantin R S. Effects of rice straw returning on methane emission in late rice paddy field. Acta Pedol Sin, 2002, 39: 170–176 (in Chinese with English abstract).

[15] 侯会静, 杨雅琴, 韩正砥, 李占超, 杨士红. 节水灌溉的稻田温室气体排放研究综述. 江苏农业学报, 2019, 47(16): 19–24.

Hou H J, Yang Y Q, Han Z D, Li Z C, Yang S H. Summarization of research on greenhouse gas emissions from paddy fields with water-saving irrigation. Jiangsu J Agric Sci, 2019, 47(16): 19–24 (in Chinese with English abstract).

[16] 吴家梅, 纪雄辉, 彭华, 谢运河, 官迪, 田发祥, 朱坚, 霍莲杰. 不同有机肥对稻田温室气体排放及产量的影响. 农业工程学报, 2018, 34(4): 162–169.

Wu J M, Ji X H, Peng H, Xie Y H, Guan D, Tian F X, Zhu J, Huo L J. Effects of different organic fertilizers on greenhouse gas emissions and yield in paddy fields. Trans CSAE, 2018, 34(4): 162–169 (in Chinese with English abstract).

[17] 李熠凡, 李烙布, 李伏生. 不同灌溉施氮模式对稻田甲烷和氧化亚氮排放的影响. 灌溉排水学报, 2021, 40(12): 44–53.

Li Y F, Li L B, Li F S. Effects of different irrigation and nitrogen application modes on methane and nitrous oxide emissions from paddy fields. J Irrig Drain, 2021, 40(12): 44–53 (in Chinese with English abstract).

[18] 郭腾飞, 梁国庆, 周卫, 刘东海, 王秀斌, 孙静文, 李双来, 胡诚. 施肥对稻田温室气体排放及土壤养分的影响. 植物营养与肥料学报, 2016, 22: 337–345.

Guo T F, Liang G Q, Zhou W, Liu D H, Wang X B, Sun J W, Li S L, Hu C. Effect of fertilizer management on greenhouse gas emission and nutrient status in paddy soil. Plant Nutr Fert Sci, 2016, 22: 337–34. (in Chinese with English abstract).

[19] 黄恒, 姜恒鑫, 刘光明, 刘嘉琦, 汪源, 王维领, 霍中洋. 侧深施氮对水稻产量及氮素吸收利用的影响. 作物学报, 2021, 47: 2232–2249.

Huang H, Jiang H X, Liu G M, Liu X Q, Wang Y, Wang W L, Huo Z Y. Effects of side deep placement of nitrogen on rice yield and nitrogen use efficiency. Acta Agron Sin, 2021, 47: 2232–2249 (in Chinese with English abstract).

[20] 纪雄辉, 郑圣先, 聂军, 戴平安, 郑颖俊. 稻田土壤上控释氮肥的氮素利用率与硝态氮的淋溶损失. 土壤通报, 2007, 38: 467–471.

Ji X H, Zheng S X, Nie J, DAI P A, Zhen Y J. Nitrogen recovery and nitrate leaching from a controlled release nitrogen fertilizer in an irrigated paddy soil. Chin J Soil Sci, 2007, 38: 467–471 (in Chinese with English abstract).

[21] 朱从桦, 张玉屏, 向镜, 张义凯, 武辉, 王亚梁, 朱德峰, 陈惠哲. 侧深施氮对机插水稻产量形成及氮素利用的影响. 中国农业科学, 2019, 52: 4228–4239.

Zhu C H, Zhang Y P, Xiang J, Zhang Y K, Wu H, WangY L, Zhu D F, Chen H Z. Effects of side deep fertilization on yield formation and nitrogen utilization of mechanized transplanting rice. Sci Agric Sin, 2019, 52: 4228–4239 (in Chinese with English abstract).

[22] 侯朋福, 薛利祥, 俞映倞, 薛利红, 范立慧, 杨林章. 缓控释肥侧深施对稻田氨挥发排放的控制效果. 环境科学, 2017, 38: 5326–5332.

Hou P F, Xue L X, Yu Y L, Xue L H, Fan L H, Yang L Z. Control effect of side deep fertilization with slow-release fertilizer on ammonia volatilization from paddy fields. Environ Sci, 2017, 38: 5326–5332 (in Chinese with English abstract).

[23] 侯坤, 荣湘民, 韩磊, 潘治宇, 彭建伟, 张玉平, 谢桂先, 田昌, 韩永亮. 速效氮与缓控释氮配比一次性侧深施对双季稻产量、氮素利用率及氮素损失的影响. 农业环境科学学报, 2021, 40: 1923–1934.

Hou K, Rong X M, Han L, Pan Z Y, Peng J W, Zhang Y P, Xie G X, Tian C, Han Y L. Effects of one-time deep application of available nitrogen and slow and controlled-release nitrogen on rice yield, nitrogen use efficiency, and nitrogen loss. J Agric Environ Sci, 2021, 40: 1923–1934 (in Chinese with English abstract).

[24] 田昌, 周旋, 黄思怡, 袁浩凌, 谢桂先, 刘强, 彭建伟. 控释尿素减施对稻田CH4N2O排放及经济效益的影响. 生态环境学报, 2019, 28: 2223–2230.

Tian C, Zhou X, Huang S Y, Yuan H L, Xie G X, Liu Q, Peng J W. Effects of controlled-release urea reduction on CH4 and N2O emissions and its economic benefits in double cropping paddy fields. Ecol Environ Sci, 2019, 28: 2223–2230 (in Chinese with English abstract).

[25] 郭晨. /控释尿素施用对作物产量、氮肥利用率及温室气体排放的影响. 华中农业大学博士学位论文湖北武汉, 2018.

Guo C. Effects of Slow/Controlled Release Urea Application on Crop Yield, Nitrogen Use Efficiency and Greenhouse Gas Emissions. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).

[26] 易琼, 逄玉万, 杨少海, 卢钰升, 付弘婷, 李苹, 蒋瑞萍, 唐拴虎. 施肥对稻田甲烷与氧化亚氮排放的影响. 生态环境学报, 2013, 22: 1432–1437.

Yi Q, Pang Y W, Yang S H, Lu Y S, Fu H T, Li P, Jiang R P, Tang S H. CH4 and N2O emissions in paddy field as influenced by fertilization. Ecol Environ Sci, 2013, 22: 1432–1437 (in Chinese with English abstract).

[27] 朱从桦, 李旭毅, 陈惠哲武辉, 欧阳裕元, 余俊奇, 黄豹明, 罗粞. 侧深施氮对机械直播水稻产量及氮素利用的影响. 核农学报, 2020, 34: 2051–2058.

Zhu C H, Li X Y, Chen H Z, Ou-Yang Y Y, Yu J Q, Huang B M, Luo X. Effects of side deep placement of nitrogen fertilizer on yield and nitrogen utilization efficiency of mechanized direct-seeded rice. Acta Agric Nucl Sin, 2020, 34: 2051–2058 (in Chinese with English abstract).

[28] Dun C P, Wang R, Mi K L, Zhang Y T, Zhang H P, Cui P Y, Guo Y L, Lu H, Zhang H C. One-time application of controlled-release bulk blending fertilizer enhanced yield, quality and photosynthetic efficiency of late japonica rice. J Integr Agric, 2023 (in Press).

[29] 马畅, 杜萌, 杨世宽, 林艳芝. 缓释肥与速效氮肥配比施用对滨海盐碱稻区水稻产量及生长发育的影响. 北方水稻, 2020, 50(2): 7–10.

Ma C, Du M, Yang S K, Lin Y Z. Effect of sustained release fertilizer and available nitrogen ration application on yield and growth development of rice in coastal saline soil. Nor Rice, 2020, 50(2): 7–10 (in Chinese with English abstract).

[30] 邢晓鸣李小春丁艳锋王绍华刘正辉. 缓控释肥组配对机插常规粳稻群体物质生产和产量的影响. 中国农业科学, 2015, 48: 4892–4902.

Xing X M, Li X C, Ding Y F, Wang S H, Liu Z H. Effects of slow and controlled release fertilizer combination on population matter production and yield of mechanically transplanted conventional japonica rice. Sci Agric Sin, 2015, 48: 4892–4902 (in Chinese with English abstract).

[31] 杨梢娜, 范国灿, 杨飞, 杨佳恒. 施肥对滨海平原单季稻秀水134产量和经济效益的影响. 浙江农业科学, 2020, 61: 637–639.

Yang S N, Fan G C, Yang F, Yang J H. Effects of fertilization on yield and economic benefit of single cropping rice Xiushui 134 in coastal plain, Zhejiang Agric Sci, 2020, 61: 637–639 (in Chinese with English abstract).

[32] 魏海燕, 李宏亮, 程金秋, 张洪程, 戴其根, 霍中洋, 许轲, 郭保卫, 胡雅杰, 崔培媛. 缓释肥类型与运筹对不同穗型水稻产量的影响作物学报, 2017, 43: 730–740.

Wei H Y, Li H L, Cheng J Q, Zhang H C, Dai Q G, Huo Z Y, Xu K, Guo B W, Hu Y J, Cui P Y. Effects of slow/controlled release fertilizer types and their application regime on yield in rice with different types of panicles. Acta Agron Sin, 2017, 43: 730–740 (in Chinese with English abstract).

[33] Zhong X M, Zhou X, Fei J C, Huang Y, Wang G, Kang, X R, Hu, W F, Zhang H R, Rong X M, Peng J W. Reducing ammonia volatilization and increasing nitrogen use efficiency in machine-transplanted rice with side-deep fertilization in a double-cropping rice system in Southern China. Agric Ecosyst Environ, 2021, 306: 107, 183.

[34] 田昌, 周旋, 黄思怡, 袁浩凌, 谢桂先, 刘强, 彭建伟. 控释尿素减施对稻田CH4N2O排放及经济效益的影响. 生态环境学报, 2019, 28: 2223–2230.

Tian C, Zhou X, Huang S Y, Yuan H L,Xie G X, Liu Q, Peng J W. Effects of controlled-release urea reduction on CH4 and N2O emissions and its economic benefits in double cropping paddy fields. Ecol Environ Sci, 2019, 28: 2223–2230 (in Chinese with English abstract).

[35] 王霞, 崔键, 周静. 典型红壤区稻田树脂包膜控释氮肥氨挥发研究. 土壤, 2011, 43: 56–59.

Wang X, Cui J, Zhou J. Ammonia volatilization of controlled-release urea enveloped with colophony from paddy field in typical red soil. Soils, 2011, 43: 56–59 (in Chinese with English abstract).

[36] Yao Y L, Zhang M, Tian Y H, Zhao M, Zhang B W, Zeng K, Zhao M, Yin B. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system. Field Crops Res, 2018, 218: 254–266.

[37] Dong Y B, Wu Z, Zhang X, Feng L, Xiong Z. Dynamic responses of ammonia volatilization to different rates of fresh and field-aged biochar in a rice-wheat rotation system. Field Crops Res, 2019, 241: 107568.

[38] Liu T Q, Fan D J, Zhang X X, Chen J, Li C F, Cao C G. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China. Field Crops Res, 2015, 184: 80–90.

[39] 肖其亮, 朱坚, 彭华, 李胜男, 纪雄辉. 稻田氨挥发损失及减排技术研究进展. 农业环境科学学报, 2021, 40: 16–25.

Xiao Q L, Zhu J, Peng H, Li S N, Ji X H. Ammonia volatilization loss and emission reduction measures in paddy fields. J Agro Environ Sci, 2021, 40: 16–25 (in Chinese with English abstract).

[40] Pan B B, Lam S K, Mosier A, Luo Y, Chen D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: a global synthesis. Agric Ecosyst Environ, 2016, 232: 283–289.

[41] 武岩, 红梅, 林立龙, 美丽, 张建强. 不同施肥措施对河套灌区盐化潮土氨挥发及氧化亚氮排放的影响. 土壤, 2017, 49: 745–752.

Wu Y, Hong M, Lin L L, Mei L, Zhang J Q. Influence of different fertilization measures on NH3 volatilization and N2O emission in salined flavo-aquic soil of Hetao irrigation area. Soils, 2017, 49: 745–752 (in Chinese with English abstract).

[42] 彭世彰, 李道西, 徐俊增, 丁加丽, 何岩, 郁进元. 节水灌溉模式对稻田CH4排放规律的影响. 环境科学, 2007, 28(1): 9–13.

Peng S Z, Li D X, Xu J Z, Ding J L, He Y, Yu J Y. Effect of water-saving irrigation on the law of CH4 emission from paddy field. Environ Sci, 2007, 28(1): 9–13 (in Chinese with English abstract).

[43] 李晶, 王明星, 陈德章. 水稻田甲烷的减排方法研究及评价. 大气科学, 1998, 22: 354–362.

Li J, Wang M X, Chen D Z. Studies on mitigation methods of methane emission from rice paddies. Atmos Sci, 1998, 22: 354–362 (in Chinese).

[44] 周文鳞, 娄运生. 控释氮肥对抗除草剂转基因水稻田土壤甲烷排放的影响. 生态学报, 2014, 34: 4555–4560.

Zhou W L, Lou Y S. Effect of controlled-release nitrogen fertilizer on CH4 emission in transgenic rice from a paddy soil. Acta Ecol Sin, 2014, 34(16): 4555–4560 (in Chinese with English abstract).

[45] Schütz H, Holzapfel P A, Conrad R, Rennenberg H, Seiler W. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission rates from an Italian rice paddy. J Geophys Res-Atmos, 1989, 94: 16405–16416.

[46] 樊代佳. 氮肥深施对免耕稻田土壤有机质特性、甲烷排放及微生物群落的影响机制. 华中农业大学博士学位论文, 湖北武汉, 2020.

Fan D J. Effects of Nitrogen Fertilizer Deep Placement on Organic Matter Properties, Methane Emissions and Microbial Communities in no Tillage Paddy Soil. PhD Dissertation of Huazhong Agricultural University, Wuhan, Hubei, China, 2022 (in Chinese with English abstract).

[47] 尉海东. 稻田甲烷排放研究进展. 中国农学通报, 2013, 29(18): 6–10.

Wei H D. Research progress about methane emission from paddy fields. Chin Agric Sci Bull, 2013, 29(18): 6–10 (in Chinese with English abstract).

[48] 张怡, 吕世华, 马静, 徐华, 袁江, 董瑜皎. 控释肥料对覆膜栽培稻田N2O排放的影响. 应用生态学报, 2014, 25: 769–775.

Zhang Y, Lyu S H, Ma J, Xu H, Yuan J, Dong Y J. Effect of controlled release fertilizer on nitrous oxide emission from paddy field under plastic

film mulching cultivation. Chin J Appl Ecol, 2014, 25: 769–775 (in Chinese with English abstract).

[49] 纪洋, 张晓艳, 马静, 李小平, 徐华, 蔡祖聪. 控释肥及其与尿素配合施用对水稻生长期N2O排放的影响. 应用生态学报, 2011, 22: 2031–2037.

Ji Y, Zhang X Y, Ma J, Li X P, Xu H, Cai Z C. Effects of applying controlled-release fertilizer and its combination with urea on nitrous oxide emission during rice growth period. Chin J Appl Ecol, 2011, 22: 2031–2037 (in Chinese with English abstract).

[50] Yan X, Shi S, Du L, Xing G. Pathways of N2O emission from rice paddy soil. Soil Biol Biochem, 2000, 32: 437–440.

[51] 李香兰, 徐华, 曹金留, 蔡祖聪, 八木一行. 水分管理对水稻生长期N2O排放的影响. 土壤, 2006, 38: 703–707.

Li X L, Xu H, Cao J L, Cai J Z, Kazuyuki Y G. Effect of water management on N2O emission in rice-growing season. Soils, 2006, 38: 703–707 (in Chinese with English abstract).

 

[1] KE Jian, CHEN Ting-Ting, XU Hao-Cong, ZHU Tie-Zhong, WU Han, HE Hai-Bing, YOU Cui-Cui, ZHU De-Quan, WU Li-Quan. Effects of different application methods of controlled-release nitrogen fertilizer on grain yield and nitrogen utilization of indica-japonica hybrid rice in pot-seedling mechanically transplanted [J]. Acta Agronomica Sinica, 2021, 47(7): 1372-1382.
[2] TANG Hai-Meng, XIAO Xiao-Beng, SHANG Wen-Guang, YANG Guang-Li. Effects of Straw Recycling of Winter Covering Crop on Methane and Nitrous Oxide Emissions in Paddy Field [J]. Acta Agron Sin, 2011, 37(09): 1666-1675.
[3] YANG Lan-Fang;CAI Zu-Cong;QI Shi-Hua. Effect of Soybean and Maize Growth on N2O Emission from Soil [J]. Acta Agron Sin, 2007, 33(05): 861-865.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!