I Yun-Xiang1,3, GUO Qian-Qian1,2, HOU Wan-Wei1,3,4,ZHANG Xiao-Juan1,2,*
[1] 张林刚, 邓西平. 小麦抗旱性生理生化研究进展. 干旱地区农业研究, 2000, 18(3): 87–92. Zhang L G, Deng X P. Research progress on drought resistance physiology and biochemistry of wheat. Agric Res Arid Areas, 2000, 18(3): 87–92 (in Chinese with English abstract). [2] Sallam A, Alqudah A M, Dawood M F A, Stephen Baenziger P, Börner A. Drought stress tolerance in wheat and barley: advances in physiology, breeding and genetics research. Int J Mol Sci, 2019, 20: 3137. [3] 严如玉, 赵希梅, 向风云, 李雅琼, 李绪勋, 司转运, 李鹏慧, 高阳, 李继福. 中国小麦优势区域生产格局及施肥现状研究. 麦类作物学报, 2024, 44: 230–241. Yan R Y, Zhao X M, Xiang F Y, Li Y Q, Li X X, Si Z Y, Li P H, Gao Y, Li J F. Research on the production pattern and fertilization status in China’s dominant regions of wheat. J Triticeae Crops, 2024, 44: 230–241(in Chinese with English abstract). [4] 黄蕾, 潘志华, 邵长秀, 董智强, 赫迪, 王立为. 北方旱作农区农业气候资源时空变化特征. 干旱地区农业研究, 2014, 32(3): 238–243. Huang L, Pan Z H, Shao C X, Dong Z Q, He D, Wang L W. Spatiotemporal changing characteristics of agricultural climate resources in northern dry crops farming area. Agric Res Arid Areas, 2014, 32(3): 238–243 (in Chinese with English abstract). [5] 徐平印. 国际干旱地区农业研究中心(ICARDA)麦类作物育种情况. 青海农林科技, 1993, (1): 58–63. Xu P Y. Breeding of wheat crops in international agricultural research center for arid areas (ICARDA). Sci Technol Qinghai Agric For, 1993, (1): 58–63 (in Chinese). [6] 蔡义忠. ICARDA麦类种质资源研究. 世界农业, 1993, (11): 17–19. Cai Y Z. Study on ICARDA wheat germplasm resources. World Agric, 1993, (11): 17–19 (in Chinese). [7] 蔡义忠. ICARDA麦类作物抗虫育种. 麦类作物学报, 1993, 13(4): 37–40. Cai Y Z. ICARDA insect-resistant breeding of wheat crops. J Triticeae Crops, 1993, 13(4): 37–40 (in Chinese). [8] 戴妙飞. ICARDA小麦种质抗条锈资源筛选和抗病基因分析. 西北农林科技大学硕士学位论文, 陕西杨凌, 2019. Dai M F. Screening of Stripe Rust Resistance Resources and Analysis of Disease Resistance Genes in ICARDA Wheat Germplasm. MS Thesis of Northwest A&F University, Yangling, Shaanxi, China, 2019 (in Chinese with English abstract). [9] 罗闰良. ICARDA硬粒小麦遗传资源的研究和利用. 世界农业, 1992, (10): 17–18. Luo R L. Research and utilization of ICARDA durum wheat genetic resources. World Agric, 1992, (10): 17–18 (in Chinese). [10] Tadesse W, El-Hanafi S, El-Fakhouri K, Imseg I, Ezzahra Rachdad F, El-Gataa Z, El Bouhssini M. Wheat breeding for hessian fly resistance at ICARDA. Crop J, 2022, 10: 1528–1535. [11] 温家兴, 张鑫, 王云, 王文亚. 多时间尺度干旱对青海省东部农业区小麦的影响. 灌溉排水学报, 2016, 35(4): 92–97. Wen J X, Zhang X, Wang Y, Wang W Y. Effects of drought in multi-time scale on wheat crop in eastern agricultural region of Qinghai province. J Irrig Drain, 2016, 35(4): 92–97 (in Chinese with English abstract). [12] 徐澜, 刘艳超, 安伟, 高志强. 冬麦春播小麦对苗期干旱胁迫的生理响应. 甘肃农业大学学报, 2020, 55 (6): 40–47. Xu L, Liu Y C, An W, Gao Z Q. Physiological response of winter wheat and spring-sown wheat to drought stress at seedling stage. J Gansu Agric Univ, 2020, 55(6): 40–47 (in Chinese with English abstract). [13] Manschadi A M, Christopher J, deVoil P, Hammer G L. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct Plant Biol, 2006, 33: 823–837. [14] 赵佳佳, 乔玲, 武棒棒, 葛川, 乔麟轶, 张树伟, 闫素仙, 郑兴卫, 郑军. 山西省小麦苗期根系性状及抗旱特性分析. 作物学报, 2021, 47: 714–727. Zhao J J, Qiao L, Wu B B, Ge C, Qiao L Y, Zhang S W, Yan S X, Zheng X W, Zheng J. Analysis of root traits and drought resistance characteristics of wheat seedlings in Shanxi province. Acta Agron Sin, 2021, 47: 714–727 (in Chinese with English abstract). [15] 王荣荣, 王海琪, 蒋桂英, 尹豪杰, 谢冰莹, 张婷. 2个不同抗旱性小麦品种耗水特征及根系生理特性对开花期干旱的响应. 水土保持学报, 2022, 36(4): 253–264. Wang R R, Wang H Q, Jiang G Y, Yin H J, Xie B Y, Zhang T. Response of water consumption and root physiological characteristics of two different drought-tolerant wheat varieties to anthesis stage drought. J Soil Water Conserv, 2022, 36(4): 253–264 (in Chinese with English abstract). [16] Adeleke E, Millas R, McNeal W, Faris J, Taheri A. Variation analysis of root system development in wheat seedlings using root phenotyping system. Agronomy, 2020, 10: 206. [17] 魏良迪. 小麦苗期抗旱品种资源的筛选与抗旱性全基因组关联分析. 山西农业大学硕士学位论文, 山西太谷, 2022. Wei L D. Screening of Drought Resistant Varieties and Genome-wide Association Analysis of Drought Resistance in Wheat at Seedling Stage. MS Thesis of Shanxi Agricultural University, Taigu, Shanxi, China, 2022 (in Chinese with English abstract). [18] Sallam A, Awadalla R A, Elshamy M M, Börner A, Heikal Y M. Genome-wide analysis for root and leaf architecture traits associated with drought tolerance at the seedling stage in a highly ecologically diverse wheat population. Comput Struct Biotechnol J, 2024, 23: 870–882. [19] Nouraei S, Mia M S, Liu H, Turner N C, Yan G J. Genome-wide association study of drought tolerance in wheat (Triticum aestivum L.) identifies SNP markers and candidate genes. Mol Genet Genomics, 2024, 299: 22. [20] Zaman Z, Iqbal R, Jabbar A, Zahra N, Saleem B, Kiran A, Maqbool S, Rasheed A, Naeem M K, Khan M R. Genetic signature controlling root system architecture in diverse spring wheat germplasm. Physiol Plant, 2024, 176: e14183. [21] 张颖, 石婷瑞, 曹瑞, 潘文秋, 宋卫宁, 王利, 聂小军. ICARDA引进小麦苗期抗旱性的全基因组关联分析. 中国农业科学, 2024, 57: 1658–1681. Zhang Y, Shi T R, Cao R, Pan W Q, Song W N, Wang L, Nie X J. Genome-wide association study of drought tolerance at seedling stage in ICARDA introduced wheat. Sci Agric Sin, 2024, 57: 1658–1681 (in Chinese with English abstract). [22] 王继庆, 任毅, 时晓磊, 王丽丽, 张新忠, 苏力坛·姑扎丽阿依, 谢磊, 耿洪伟. 小麦籽粒超氧化物歧化酶(SOD)活性全基因组关联分析. 中国农业科学, 2021, 54: 2249–2265. Wang J Q, Ren Y, Shi X L, Wang L L, Zhang X Z, Sulitan·G Z L A Y, Xie L, Geng H W. Genome-wide association analysis of superoxide dismutase (SOD) activity in wheat grain. Sci Agric Sin, 2021, 54: 2249–2265 (in Chinese with English abstract). [23] 李云香, 张思甜, 侯万伟, 张小娟. ICARDA引进小麦种质苗期的抗旱性鉴定及SNP关联分析. 作物学报, 2024, 50: 2742–2753. Li Y X, Zhang S T, Hou W W, Zhang X J. Drought resistance identification and SNP association analysis of wheat germplasm introduced by ICARDA at seedling stage. Acta Agron Sin, 2024, 50: 2742–2753 (in Chinese with English abstract). [24] 职蕾, 者理, 孙楠楠, 杨阳, Dauren Serikbay, 贾汉忠, 胡银岗, 陈亮. 小麦苗期铅耐受性的全基因组关联分析. 中国农业科学, 2022, 55: 1064–1081. Zhi L, Zhe L, Sun N N, Yang Y, Serikbay D, Jia H Z, Hu Y G, Chen L. Genome-wide association analysis of lead tolerance in wheat at seedling stage. Sci Agric Sin, 2022, 55: 1064–1081 (in Chinese with English abstract). [25] Maulana F, Huang W Q, Anderson J D, Ma X F. Genome-wide association mapping of seedling drought tolerance in winter wheat. Front Plant Sci, 2020, 11: 573786. [26] 张余周, 王一钊, 高茹茜, 刘逸凡. 小麦根系构型及抗旱性研究进展. 中国农业科学, 2024, 57: 1633–1645. Zhang Y Z, Wang Y Z, Gao R X, Liu Y F. Research progress on root system architecture and drought resistance in wheat. Sci Agric Sin, 2024, 57: 1633–1645 (in Chinese with English abstract). [27] 滕政凯, 王春艳, 卜明娜, 周苏玫, 胡乃月, 谢松鑫, 贾晓雯, 杨习文, 贺德先. 抗旱小麦品种根系垂直分布和根尖特征分析研究. 麦类作物学报, 2024, 44 : 1172–1184. Teng Z K, Wang C Y, Bu M A, Zhou S M, Hu N Y, Xie S X, Jia X W, Yang X W, He D X. Analysis of vertical root distribution and root tip characteristics of drought-resistant wheat varieties. J Triticeae Crops, 2024, 44: 1172–1184 (in Chinese with English abstract). [28] Lucas S J, Salantur A, Yazar S, Budak H. High-throughput SNP genotyping of modern and wild emmer wheat for yield and root morphology using a combined association and linkage analysis. Funct Integr Genomics, 2017, 17: 667–685. [29] 曲可佳, 时晓磊, 王兴州, 耿洪伟, 丁孙磊, 张恒, 严勇亮. PEG胁迫下春麦根部性状全基因组关联分析. 植物遗传资源学报, 2023, 24: 396–407. Qu K J, Shi X L, Wang X Z, Geng H W, Ding S L, Zhang H, Yan Y L. Genome-wide association analysis of root traits of spring wheat under PEG stress. J Plant Genet Resour, 2023, 24: 396–407 (in Chinese with English abstract). [30] Lin Y, Yi X, Tang S, Chen W, Wu F K, Yang X L, Jiang X J, Shi H R, Ma J, Chen G D, et al. Dissection of phenotypic and genetic variation of drought-related traits in diverse Chinese wheat landraces. Plant Genome, 2019, 12: 1–14. [31] Siddiqui N, Gabi M T, Kamruzzaman M, Ambaw A M, Teferi T J, Dadshani S, Léon J, Ballvora A. Genetic dissection of root architectural plasticity and identification of candidate loci in response to drought stress in bread wheat. BMC Genom Data, 2023, 24: 38. [32] Mathew I, Shimelis H, Shayanowako A I T, Laing M, Chaplot V. Genome-wide association study of drought tolerance and biomass allocation in wheat. PLoS One, 2019, 14: e0225383. [33] Ma J H, Zhao D Y, Tang X X, Yuan M, Zhang D J, Xu M Y, Duan Y Z, Ren H Y, Zeng Q D, Wu J H, et al. Genome-wide association study on root system architecture and identification of candidate genes in wheat (Triticum aestivum L.). Int J Mol Sci, 2022, 23: 1843. [34] 王博华, 任毅, 时晓磊, 王继庆, 谢磊, 加娜尔·拜合提, 耿洪伟. 干旱胁迫下小麦苗期根系性状的全基因组关联分析. 植物遗传资源学报, 2022, 23: 1111–1123. Wang B H, Ren Y, Shi X L, Wang J Q, Xie L, Ganal B, Geng H W. Genome-wide association analysis of root traits in wheat seedlings under drought stress. J Plant Genet Resour, 2022, 23: 1111–1123. [35] Beyer S, Daba S, Tyagi P, Bockelman H, Brown-Guedira G, IWGSC, Mohammadi M. Loci and candidate genes controlling root traits in wheat seedlings-a wheat root GWAS. Funct Integr Genomics, 2019, 19: 91–107. [36] Zhao P, Ma X Y, Zhang R Z, Cheng M Z, Niu Y X, Shi X, Ji W Q, Xu S B, Wang X M. Integration of genome-wide association study, linkage analysis, and population transcriptome analysis to reveal the TaFMO1-5B modulating seminal root growth in bread wheat. Plant J, 2023, 116: 1385–1400. [37] Ghimire S, Hasan M M, Fang X W. Small ubiquitin-like modifiers E3 ligases in plant stress. Funct Plant Biol, 2024, 51: FP24032. [38] Ren J X, Feng L, Guo L L, Gou H M, Lu S X, Mao J. Genome-wide identification and expression analysis of the BURP domain-containing genes in Malus domestica. Physiol Mol Biol Plants, 2023, 29: 1717–1731. [39] Rodríguez-Hoces de la Guardia A, Ugalde M B, Lobos-Diaz V, Romero-Romero J L, Meyer-Regueiro C, Inostroza-Blancheteau C, Reyes-Diaz M, Aquea F, Arce-Johnson P. Isolation and molecular characterization of MYB6o in Solanum lycopersicum. Mol Biol Rep, 2021, 48: 1579–1587. [40] Oh J E, Kwon Y, Kim J H, Noh H, Hong S W, Lee H. A dual role for MYB6o in stomatal regulation and root growth of Arabidopsis thaliana under drought stress. Plant Mol Biol, 2011, 77: 91–103. [41] Babitha K C, Ramu S V, Pruthvi V, Mahesh P, Nataraja K N, Udayakumar M. Co-expression of AtbHLH17 and AtWRKY28 confers resistance to abiotic stress in Arabidopsis. Transgenic Res, 2013, 22: 327–341. [42] Li S M, Zhang Y F, Liu Y L, Zhang P Y, Wang X M, Chen B, Ding L, Nie Y X, Li F F, Ma Z B, et al. The E3 ligase TaGW2 mediates transcription factor TaARR12 degradation to promote drought resistance in wheat. Plant Cell, 2024, 36: 605–625. [43] Zhang J L, Li C N, Li L, Xi Y J, Wang J Y, Mao X G, Jing R L. RING finger E3 ubiquitin ligase gene TaAIRP2-1B controls spike length in wheat. J Exp Bot, 2023, 74: 5014–5025. [44] Sugawara H, Kawano Y, Hatakeyama T, Yamaya T, Kamiya N, Sakakibara H. Crystal structure of the histidine-containing phosphotransfer protein ZmHP2 from maize. Protein Sci, 2005, 14: 202–208. [45] Huang F Y, Abbas F, Rothenberg D O, Imran M, Fiaz S, Rehman N U, Amanullah S, Younas A, Ding Y, Cai X J, et al. Molecular cloning, characterization and expression analysis of two 12-oxophytodienoate reductases (NtOPR1 and NtOPR2) from Nicotiana tabacum. Mol Biol Rep, 2022, 49: 5379–5387. [46] Gabay G, Wang H C, Zhang J L, Moriconi J I, Burguener G F, Gualano L D, Howell T, Lukaszewski A, Staskawicz B, Cho M J, et al. Dosage differences in 12-OXOPHYTODIENOATE REDUCTASE genes modulate wheat root growth. Nat Commun, 2023, 14: 539. [47] Akhtar M, Jaiswal A, Taj G, Jaiswal J P, Qureshi M I, Singh N K. DREB1/CBF transcription factors: their structure, function and role in abiotic stress tolerance in plants. J Genet, 2012, 91: 385–395. [48] Zhang Y X, Tian H D, Chen D, Zhang H, Sun M H, Chen S X, Qin Z, Ding Z J, Dai S J. Cysteine-rich receptor-like protein kinases: emerging regulators of plant stress responses. Trends Plant Sci, 2023, 28: 776–794. [49] Gupta S, Mishra S K, Misra S, Pandey V, Agrawal L, Nautiyal C S, Chauhan P S. Revealing the complexity of protein abundance in chickpea root under drought-stress using a comparative proteomics approach. Plant Physiol Biochem, 2020, 151: 88–102. [50] Xia Y Y, Yang J F, Ma L, Yan S, Pang Y Z. Genome-wide identification and analyses of drought/salt-responsive cytochrome P450 genes in Medicago truncatula. Int J Mol Sci, 2021, 22: 9957. [51] Aleem M, Riaz A, Raza Q, Aleem M, Aslam M, Kong K K, Atif R M, Kashif M, Bhat J A, Zhao T J. Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics, 2022, 114: 45–60. |
No related articles found! |
|