CAI Jin-Shan1, LI Chao-Nan2, WANG Jing-Yi2, LI Ning1, LIU Yu-Ping2, JING Rui-Lian2, LI Long2,*, SUN Dai-Zhen1,*
[1] FAOSTAT. Statistics Database. Rome Available at: http://www.fao.org/statistics/databases/en/ [2025-04-04]. [2] Bailey-Serres J, Parker J E, Ainsworth E A, Oldroyd G E D, Schroeder J I. Genetic strategies for improving crop yields. Nature, 2019, 575: 109–118. [3] Li L, Wang J Y, Li C N, Mao X G, Zhang X Q, Sun J W, Zhang K, Liu Y P, Reynolds M P, Yang Z G, et al. Insights into progress of wheat breeding in arid and infertile areas of China in the last 14 years. Field Crops Res, 2024, 306: 109220. [4] Nirmalaruban R, Yadav R, Sugumar S, Meda A, Babu P, Kumar M, Gaikwad K B, Bainsla N K, Singh S K, Suvitha R, et al. Root traits: a key for breeding climate-smart wheat (Triticum aestivum). Plant Breed, 2025, 144: 310–334. [5] Ober E S, Alahmad S, Cockram J, Forestan C, Hickey L T, Kant J, Maccaferri M, Marr E, Milner M, Pinto F, et al. Wheat root systems as a breeding target for climate resilience. Theor Appl Genet, 2021, 134: 1645–1662. [6] Tiwari V K, Saripalli G, Sharma P K, Poland J. Wheat genomics: genomes, pangenomes, and beyond. Trends Genet, 2024, 40: 982–992. [7] Sahito J H, Zhang H, Gishkori Z G N, Ma C H, Wang Z H, Ding D, Zhang X H, Tang J H. Advancements and prospects of genome-wide association studies (GWAS) in maize. Int J Mol Sci, 2024, 25: 1918. [8] Han S C, Wang Y L, Li Y X, Zhu R, Gu Y S, Li J, Guo H F, Ye W, Nabi H G, Yang T, et al. The OsNAC41-RoLe1-OsAGAP module promotes root development and drought resistance in upland rice. Mol Plant, 2024, 17: 1573–1593. [9] Li C H, Guo J, Wang D M, Chen X J, Guan H H, Li Y X, Zhang D F, Liu X Y, He G H, Wang T Y, et al. Genomic insight into changes of root architecture under drought stress in maize. Plant Cell Environ, 2023, 46: 1860–1872. [10] International Wheat Genome Sequencing Consortium (IWGSC). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 2018, 361: eaar7191. [11] Yao Y Y, Guo W L, Gou J Y, Hu Z R, Liu J, Ma J, Zong Y, Xin M M, Chen W, Li Q, et al. Wheat 2035: integrating pan-omics and advanced biotechnology for future wheat design. Mol Plant, 2025, 18: 272–297. [12] Jiao C Z, Xie X M, Hao C Y, Chen L Y, Xie Y X, Garg V, Zhao L, Wang Z H, Zhang Y Q, Li T, et al. Pan-genome bridges wheat structural variations with habitat and breeding. Nature, 2025, 637: 384–393. [13] Chen D D, Richardson T, Chai S C, Lynne McIntyre C, Rae A L, Xue G P. Drought-up-regulated TaNAC69-1 is a transcriptional repressor of TaSHY2 and TaIAA7, and enhances root length and biomass in wheat. Plant Cell Physiol, 2016, 57: 2076–2090. [14] Wang D Z, Zhang X X, Cao Y, Batool A, Xu Y X, Qiao Y Z, Li Y P, Wang H, Lin X L, Bie X M, et al. TabHLH27 orchestrates root growth and drought tolerance to enhance water use efficiency in wheat. J Integr Plant Biol, 2024, 66: 1295–1312. [15] Li Y Y, Zhang Y F, Li C N, Chen X, Yang L L, Zhang J, Wang J Y, Li L, Reynolds M P, Jing R L, et al. Transcription factor TaWRKY51 is a positive regulator in root architecture and grain yield contributing traits. Front Plant Sci, 2021, 12: 734614. [16] Yang W, Feng M, Yu K H, Cao J, Cui G X, Zhang Y M, Peng H R, Yao Y Y, Hu Z R, Ni Z F, et al. The TaCLE24b peptide signaling cascade modulates lateral root development and drought tolerance in wheat. Nat Commun, 2025, 16: 1952. [17] Li L, Mao X G, Wang J Y, Chang X P, Reynolds M, Jing R L. Genetic dissection of drought and heat-responsive agronomic traits in wheat. Plant Cell Environ, 2019, 42: 2540–2553. [18] 赵阳, 李龙, 杨进文, 景蕊莲, 孙黛珍, 王景一. 小麦E3泛素连接酶基因TaSINA-3A与多种环境下的株高和千粒重相关. 作物学报, 2024, 50: 2654–2664. Zhao Y, Li L, Yang J W, Jing R L, Sun D Z, Wang J Y. An E3 ubiquitin ligase gene TaSINA-3A is associated with plant height and 1000-grain weight in various environments in wheat. Acta Agron Sin, 2024, 50: 2654–2664 (in Chinese with English abstract). [19] Yin L L, Zhang H H, Tang Z S, Xu J Y, Yin D, Zhang Z W, Yuan X H, Zhu M J, Zhao S H, Li X Y, et al. rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom Proteom Bioinf, 2021, 19: 619–628. [20] Li M X, Yeung J M Y, Cherny S S, Sham P C. Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets. Hum Genet, 2012, 131: 747–756. [21] Chen Y M, Guo Y W, Guan P F, Wang Y F, Wang X B, Wang Z H, Qin Z, Ma S W, Xin M M, Hu Z R, et al. A wheat integrative regulatory network from large-scale complementary functional datasets enables trait-associated gene discovery for crop improvement. Mol Plant, 2023, 16: 393–414. [22] Li L, Peng Z, Mao X G, Wang J Y, Li C N, Chang X P, Jing R L. Genetic insights into natural variation underlying salt tolerance in wheat. J Exp Bot, 2021, 72: 1135–1150. [23] 李龙, 李超男, 毛新国, 王景一, 景蕊莲. 作物根系表型鉴定评价方法的现状与展望. 中国农业科学, 2022, 55: 425–437. Li L, Li C N, Mao X G, Wang J Y, Jing R L. Advances and perspectives of approaches to phenotyping crop root system. Sci Agric Sin, 2022, 55: 425–437 (in Chinese with English abstract). [24] Urfan M, Sharma S, Hakla H R, Rajput P, Andotra S, Lehana P K, Bhardwaj R, Khan M S, Das R, Kumar S, et al. Recent trends in root phenomics of plant systems with available methods-discrepancies and consonances. Physiol Mol Biol Plants, 2022, 28: 1311–1321. [25] Xiong H Y, He H D, Chang Y, Miao B B, Liu Z W, Wang Q Q, Dong F M, Xiong L Z. Multiple roles of NAC transcription factors in plant development and stress responses. J Integr Plant Biol, 2025, 67: 510–538. [26] Xie C T, Li C L, Wang F X, Zhang F, Liu J J, Wang J X, Zhang X S, Kong X P, Ding Z J. NAC1 regulates root ground tissue maturation by coordinating with the SCR/SHR-CYCD6;1 module in Arabidopsis. Mol Plant, 2023, 16: 709–725. [27] Xu P P, Ma W, Hu J B, Cai W M. The nitrate-inducible NAC transcription factor NAC056 controls nitrate assimilation and promotes lateral root growth in Arabidopsis thaliana. PLoS Genet, 2022, 18: e1010090. [28] Mao C J, He J M, Liu L N, Deng Q M, Yao X F, Liu C M, Qiao Y L, Li P, Ming F. OsNAC2 integrates auxin and cytokinin pathways to modulate rice root development. Plant Biotechnol J, 2020, 18: 429–442. [29] Swain N, Sahoo R K, Jeughale K P, Sarkar S, Selvaraj S, Parameswaran C, Katara J, Bose L K, Samantaray S. Rice homolog of Arabidopsis Xylem NAC domain 1 (OsXND1), a NAC transcription factor regulates drought stress responsive root system architecture in indica rice. Mol Genet Genomics, 2024, 299: 94. [30] Lyu S K, Guo H, Zhang M, Wang Q H, Zhang H, Ji W Q. Large-scale cloning and comparative analysis of TaNAC genes in response to stripe rust and powdery mildew in wheat (Triticum aestivum L.). Genes, 2020, 11: 1073. [31] Gao J, Zhao Y, Zhao Z K, Liu W, Jiang C H, Li J J, Zhang Z Y, Zhang H L, Zhang Y G, Wang X N, et al. RRS1 shapes robust root system to enhance drought resistance in rice. New Phytol, 2023, 238: 1146–1162. [32] Uga Y. Challenges to design-oriented breeding of root system architecture adapted to climate change. Breed Sci, 2021, 71: 3–12. [33] Voss-Fels K P, Qian L W, Parra-Londono S, Uptmoor R, Frisch M, Keeble-Gagnère G, Appels R, Snowdon R J. Linkage drag constrains the roots of modern wheat. Plant Cell Environ, 2017, 40: 717–725. [34] Xiang Y H, Yu J J, Liao B, Shan J X, Ye W W, Dong N Q, Guo T, Kan Y, Zhang H, Yang Y B, et al. An α/β hydrolase family member negatively regulates salt tolerance but promotes flowering through three distinct functions in rice. Mol Plant, 2022, 15: 1908–1930. |
No related articles found! |
|