Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Screening of drought and salt tolerant germplasm during wheat seedling stage and comprehensive evaluation of drought and salt tolerance

HU Run-Hui1,2,WANG Jun-Cheng1,3,SI Er-Jing1,3,ZHANG Hong1,3,MA Xiao-Le1,3,MENG Ya-Xiong1,3,WANG Hua-Jun1,3,LIU Qing1,2,YAO Li-Rong1,3,*,LI Bao-Chun1,2,*   

  1. 1 State Key Laboratory of Aridland Crop Science, Lanzhou 730070, Gansu, China; 2 College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China; 3 Agronomy College, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2025-02-27 Revised:2025-06-01 Accepted:2025-06-01 Online:2025-06-11 Published:2025-06-11
  • Supported by:
    This study was supported by the Gansu Province Science and Technology Joint Plan Fund Project (24JRRA840), the Modern Cold and Drought Characteristic Agricultural Seed Industry Research Project (ZYGG-2025-3, ZYGG-2025-12-3), the Key Talent Project of Gansu Province (2023RCXM70), the Key Research and Development Project of Gansu Provincial Department of Science and Technology (25YFNA032), the Central Guidance for Local Scientific and Technological Development Funding Projects (25ZYJA002), the Science and Technology Program of Gansu Province (24CXNA038), the Key Project of Natural Science Foundation of Gansu Province (24JRRA637), the Industrial Support Project of Colleges and Universities in Gansu Province (2021CYZC-12), the Fuxi Young Talents Fund of Gansu Agricultural University (Gaufx-03Y06, GAUfx-04Y011), and the State Key Laboratory of Aridland Crop Science Open Fund (GSCS-2021-05). 

Abstract:

drought and salt stress evaluation system was established to screen for droughtand salt-tolerant wheat germplasmEight wheat genotypes (varieties/lines) were used as experimental materials, and hydroponic culture was employed at the seedling stage. Plants were subjected to drought stress (20% PEG-6000), salt stress (200 mmol L-1 NaCl), and combined stress (20% PEG-6000+200 mmol L-1 NaCl). A total of 19 traits, including biomass, root-related parameters, and physiological indices, were measured under each stress condition. Drought and salt tolerance indices were calculated for each trait, followed by principal component analysis (PCA) and cluster analysis using the comprehensive membership function method to evaluate the stress tolerance of the different wheat varieties. Compared with the control, leaf relative water content decreased to varying degrees under all three stress treatments. In contrast, protective enzyme activities (SOD, POD, and CAT), membrane lipid peroxidation (MDA content), and proline accumulation showed overall increases. Soluble protein content declined across the different wheat varieties. Root morphological indicators such as average root volume, root surface area, and total root length generally increased under stress. The coefficient of variation among traits reached up to 116.86% across treatments. PCA was performed on the drought and salt tolerance indices of the 19 traits, and the comprehensive evaluation index (D valuewas calculated using the membership function method. Multiple regression analysis identified chlorophyll content (SPAD), soluble protein content (SP), root surface area, average root volume, total root length, and root-to-crown ratio as key indicators for evaluating drought and salt tolerance in wheat linesSystematic cluster analysis further revealed that Xinong 535, Longyu 11, Lan 19, Lantian 10, and Longzimai 1 exhibited strong drought resistance; Longjian 114 and Xikemai 510 showed strong salt tolerance; and Xinong 535 and Longyu 11 performed best under combined drought and salt stress.

Key words: wheat, seedling stage, drought resistant and salt tolerant, screening criteria, comprehensive evaluation

[1] Mustafa H, Ilyas N, Akhtar N, Raja N I, Zainab T, Shah T, Ahmad A, Ahmad P. Biosynthesis and characterization of titanium dioxide nanoparticles and its effects along with calcium phosphate on physicochemical attributes of wheat under drought stress. Ecotoxicol Environ Saf, 2021, 223: 112519.

[2] 冯起, 尹鑫卫, 朱猛, 张举涛, 刘蔚, 席海洋, 鱼腾飞, 杨林山, 刘文, 陆志翔. 统筹推进西北地区盐碱地综合治理利用: 现状、挑战与对策建议. 中国科学院院刊, 2024, 39: 2060–2073.
Feng Q, Yin X W, Zhu M, Zhang J T, Liu W, Xi H Y, Yu T F, Yang L S, Liu W, Lu Z X. Overall promotion of integrated management and utilization of saline-alkali land in northwest China: Conditions, challenges, and recommendations. Bull Chin Acad Sci, 2024, 39: 2060–2073 (in Chinese with English abstract).

[3] 刘金萍, 高奔, 李欣, 宋杰, 范海, 王宝山, 赵可夫. 盐旱互作对不同生境盐地碱蓬种子萌发和幼苗生长的影响. 生态学报, 2010, 30: 5485–5490.
Liu J P, Gao B, Li X, Song J, Fan H, Wang B S, Zhao K F. The effects of salinity and drought interaction on seed germination and seedling growth of Suaeda salsa L. from different habitats. Acta Ecol Sin, 2010, 30: 5485–5490 (in Chinese with English abstract).

[4] 汝晨, 胡笑涛, 吕梦薇, 陈滇豫, 王文娥, 宋天媛. 花后高温干旱胁迫下氮素对冬小麦氮积累与代谢酶、蛋白质含量及水氮利用效率的影响. 中国农业科学, 2022, 55: 3303–3320.
Ru C, Hu X T, Lyu M W, Chen D Y, Wang W E, Song T Y. Effects of nitrogen on nitrogen accumulation and distribution, nitrogen metabolizing enzymes, protein content, and water and nitrogen use efficiency in winter wheat under heat and drought stress after anthesis. Sci Agric Sin, 2022, 55: 3303–3320 (in Chinese with English abstract).

[5] 马永忠, 蔡福, 赵先丽, 王阳. 花后持续干旱对玉米生理参数及产量的影响.气象与环境学报, 2019, 35(2): 102–106.

Ma Y Z,Cai F, Zhao X L, Wang Y. Responses of main physiological parameters and yield of spring maize to drought stress after flowering. J Meteor Environ, 2019,35(2): 102–106 (in Chinese with English abstract).

[6] 孙淑英, 陈贵林. 干旱胁迫对蒙古黄芪生殖生长及活性成分的影响. 分子植物育种, 2019, 17: 7559–7565.
Sun S Y, Chen G L. Effects of drought stress on reproductive growth and effective components of Astragalus membranaceus var. mongholicus. Mol Plant Breed, 2019, 17: 7559–7565 (in Chinese with English abstract).

[7] 赵可夫, 李法曾. 中国盐生植物. 北京. 高等教育出版社, 2013.

Zhao K F, Li F Z. Chinese Halophytes. Beijing: Higher Education Press, 2013 (in Chinese).

[8] 米富贵, 王桂花. 禾本科牧草基因工程技术及应用. 北京. 科学出版社, 2010.

Mi F G, Wang G H. Genetic Engineering Technology and Application of Poaceae Forage. Beijing: Science Press, 2010 (in Chinese).

[9] 刘欣. 植物的耐盐生物学机制研究进展. 哈尔滨师范大学自然科学学报, 2015, 31(2): 140–145.

Liu X. Advances of salt tolerance biology mechanism in plants. Nat Sci J Harbin Normal Univ, 2015, 31(2): 140–145 (in Chinese with English abstract).

[10] 朱金方, 夏江宝, 陆兆华, 刘京涛, 孙景宽. 盐旱交叉胁迫对柽柳幼苗生长及生理生化特性的影响. 西北植物学报, 2012, 32: 124–130.
Zhu J F, Xia J B, Lu Z H, Liu J T, Sun J K. Growth, physiological and biochemical characteristics of Tamarix chinensis seedlings under salt-drought intercross stress. Acta Bot Boreali-Occident Sin, 2012, 32: 124–130 (in Chinese with English abstract).

[11] 沈玉芳, 曲东, 王保莉, 张兴昌. 干旱胁迫下磷营养对不同作物苗期根系导水率的影响. 作物学报, 2005, 31: 214–218.
Shen Y F, Qu D, Wang B L, Zhang X C. Effects of phosphorus on root hydraulic conductivity of crops under drought stress. Acta Agron Sin, 2005, 31: 214–218 (in Chinese with English abstract).

[12] 惠宏杉, 林立昊, 齐军仓, 廖乐, 王超龙, 程海涛. 干旱胁迫对大麦幼苗根系的影响. 麦类作物学报, 2015, 35: 1291–1297.
Hui H S, Lin L H, Qi J C, Liao L, Wang C L, Cheng H T. Effect of drought stress on the roots of barley seedling. J Triticeae Crops, 2015, 35: 1291–1297 (in Chinese with English abstract).

[13] Khan A. 小麦根对盐胁迫的响应机制研究.东北师范大学硕士学位论文, 吉林长春, 2020.
Khan A. Responsive Mechanisms of Wheat (Triticum aestivum L.) Root to Salinity Stress. MS Thesis of Northeast Normal University, Changchun, Jilin, 2020 (in Chinese with English abstract).

[14] Wu A J, Fang Y, Liu S, Wang H, Xu B C, Zhang S Q, Deng X P, Palta J A, Siddique K H, Chen Y L. Root morphology and rhizosheath acid phosphatase activity in legume and graminoid species respond differently to low phosphorus supply. Rhizosphere, 2021, 19: 100391.

[15] 宗毓铮, 张函青, 李萍, 张东升, 林文, 薛建福, 高志强, 郝兴宇. 大气CO2与温度升高对北方冬小麦旗叶光合特性、碳氮代谢及产量的影响. 中国农业科学, 2021, 54: 4984–4995.
Zong Y Z, Zhang H Q, Li P, Zhang D S, Lin W, Xue J F, Gao Z Q, Hao X Y. Effects of elevated atmospheric CO2 concentration and temperature on photosynthetic characteristics, carbon and nitrogen metabolism in flag leaves and yield of winter wheat in north China. Sci Agric Sin, 2021, 54: 4984–4995 (in Chinese with English abstract).

[16] 陈家婷, 白欣, 谷雨杰, 张潇文, 郭慧娟, 常利芳, 陈芳, 张树伟, 张晓军, 李欣, 小麦芽期和苗期耐盐鉴定方法的适用性评价作物学报, 2024, 50: 1193–1206.
Cheng J T, Bai X, Gu Y J, Zhang X W, Guo H J, Chang L F, Zhang S W, Zhang X J, Li X, et al. Applicability evaluation of screen methods to identify salt tolerance in wheat at germination and seedling stages. Acta Agron Sin, 2024, 50: 1193–1206 (in Chinese with English abstract).

[17] 邹琦. 植物生理生化实验指导. 北京: 中国农业出版社, 1995.
Zou Q. Guidance of Plant Physiological and Biochemical Experiments. Beijing: China Agriculture Press, 1995 (in Chinese).

[18] 丁富功, 侯泽豪, 卢奕霏, 宋婧含, 孙悦, 马东方, 刘易科, 朱展望, 张鹏飞, 张迎新, . 小麦不同组织器官叶绿素测定方法的比较研究. 东北农业科学, 2022, 47(5): 111–115.
Ding F G, Hou Z H, Lu Y F, Song J H, Sun Y, Ma D F, Liu Y K, Zhu Z W, Zhang P F, Zhang Y X, et al. Comparative study on determination of chlorophyll in different tissues and organs of wheat. J Northeast Agric Sci, 2022, 47(5): 111–115 (in Chinese with English abstract).

[19] 孟雨, 田文仲, 温鹏飞, 丁志强, 张学品, 贺利, 段剑钊, 刘万代, 郭天财, 冯伟. 基于不同发育阶段协同的小麦品种抗旱性综合评判. 作物学报, 2023, 49: 570–582.

Meng Y, Tian W Z, Wen P F, Ding Z Q, He L, Duan J Z, Liu W D, Guo T C, Feng W. Comprehensive evaluation of drought resistance of wheat varieties based on synergy of different developmental stages. Acta Agron Sin, 2023, 49: 570–582 (in Chinese with English abstract).

[20] Xu Z S, Chen M, Li L C, Ma Z Y. Functions and application of the AP2/ERF transcription factor family in crop improvement. J Int Plant Biology, 2011,53: 570–585.

[21] 姚宁,宋利兵,刘健, 冯浩, 吴淑芳, 何建强不同生长阶段水分胁迫对旱区冬小麦生长发育和产量的影响中国农业科学, 2015, 48: 2379–2389.
Yao N, Song L B, Liu J, Feng H, Wu S F, He J Q. Effects of water stress at different growth stages on the development and yields of winter wheat in arid region. Sci Agric Sin, 2015,48: 2379–2389 (in Chinese with English abstract).

[22] 董杰, 陈新新, 杨倩, 张怀渝, 陈洋尔. 高光、水分和盐胁迫下小麦光合特性和抗氧化酶系统的比较. 麦类作物学报, 2018, 38: 315–322.

Dong J, Chen X X, Yang Q, Zhang H Y, Chen Y E. Effects of high light, water and salt stresses on photosynthetic characteristics and antioxidant enzyme system in wheat. J Triticeae Crops, 2018, 38: 315–322 (in Chinese with English abstract).

[23] 李国领, 齐学礼, 张志强, 罗鹏, 辛均安, 李延峰, 史利霞. 不同小麦品种的生理和产量特性对灌浆期干旱胁迫的响应. 河南农业科学, 2018, 47(4): 8–14.

Li G L, Qi X L, Zhang Z Q, Luo P, Xin J A, Li Y F, Shi L X. Response of physiological and yield characters of different wheat cultivars to drought stress at grain filling stage. J Henan Agric Sci, 2018,47(4):8–14 in Chinese with English abstract).

[24] 段凌凤, 傅金阳, 王新轶, 施家伟, 李为坤, 杨万能. 基于深度学习的小麦抗旱相关根系表型原位测量与分析. 农业机械学报, 2024, 55(5): 207–217.
Duan L F, Fu J Y, Wang X Y, Shi J W, Li W K, Yang W N. In-situ measurement and analysis of drought-related wheat root phenotypic traits. Trans CSAM, 2024, 55(5): 207–217 in Chinese with English abstract).

[25] Datir S S, Inamdar A. Biochemical responses of wheat cultivars to PEG-induced drought stress. Russ Agric Sci, 2019, 45: 5–12.

[26] 王旭明, 赵夏夏, 陈景阳, 许江环, 周柏霖, 王盼盼, 莫素, 莫俊杰, 谢平, 周鸿凯. 盐胁迫下海水稻抗逆生理响应分析. 中国生态农业学报(中英文), 2019, 27: 747–756.
Wang X M, Zhao X X, Chen J Y, Xu J H, Zhou B L, Wang P P, Mo S, Mo J J, Xie P, Zhou H K. Physiological adversity resistance of sea rice to salinity stress. Chin J Eco-Agric, 2019, 27: 747–756 (in Chinese with English abstract).

[27] 陈春舟, 马占军, 孟亚雄, 马小乐, 王化俊, 李葆春. 小麦种质资源抗旱耐盐性评价及种质筛选. 分子植物育种, 2021, 19: 4820–4835.

Chen C Z, Ma Z J, Meng Y X, Ma X L, Wang H J, Li B C. Evaluation and screening of wheat germplasm resources for drought and salt tolerance. Mol Plant Breed, 2021, 19: 4820–4835 (in Chinese with English abstract).

[28] 兰巨生, 胡福顺, 张景瑞. 作物抗旱指数的概念和统计方法. 华北农学报, 1990, 5(2): 20–25.
Lan J S, Hu F S, Zhang J R. The concept and statistical method of drought resistance index in crops. Acta Agric Boreali-Sin, 1990, 5(2): 20–25 (in Chinese with English abstract).

[29] 范蓉. 基于生理指标与基因表达量评价棉花抗旱耐盐性. 新疆农业大学硕士学位论文, 新疆乌鲁木齐, 2020.

Fan R. Evaluation of Cotton Drought and Salt Tolerance Based on Physiological Indexes and Gene Expression. MS Thesis of Xinjiang Agricultural University, Urumqi, Xinjiang, China, 2020 (in Chinese with English abstract).

[30] 盛雨婷, 生林山, 陆峻一, 赵爱菊, 李夕梅. 基于形态指标和转录组的小麦抗旱与耐盐相关性分析. 山西农业科学, 2021, 49: 1426–1432.
Sheng Y T, Sheng L S, Lu J Y, Zhao A J, Li X M. Correlation analysis of drought resistance and salt tolerance based on morphological index and transcriptome in wheat. J Shanxi Agric Sci, 2021, 49: 1426–1432 (in Chinese with English abstract).

[31] 高宝云, 张军. 9个冬小麦品种对苗期干旱的生理响应及抗旱性评价. 山西农业科学, 2017, 45: 340–345.
Gao B Y, Zhang J. Biochemical responses of 9 winter wheat cultivars to drought stress at seedling stage and drought resistance evaluation. J Shanxi Agric Sci, 2017, 45: 340–345 (in Chinese with English abstract).

[32] 袁海涛, 傅秀云, 郝鲁湘, 贾德新, 张超. 耐盐小麦主要农艺性状的表现及其与产量的关系. 麦类作物学报, 1996, 16: 2628.
Yuan H T, Fu X Y, Hao L X, Jia D X, Zhang C. Performance of main agronomic characters of salt-tolerant wheat and their relationship with yield. Tritical Crops, 1996, 16: 2628 (in Chinese).

[33] 王一凡, 杨江伟, 唐勋, 晋昕, 张宁, 司怀军. 马铃薯响应磷胁迫机制及磷高效利用育种. 中国马铃薯, 2021, 35: 68–74.
Wang Y F, Yang J W, Tang X, Jin X, Zhang N, Si H J. Mechanism of potato response to phosphorus stress and high-efficiency phosphorus breeding. Chin Potato J, 2021, 35: 68–74 (in Chinese with English abstract).

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!