Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Responses of uptake and accumulation of manganese and zinc in wheat to zinc fertilization

WANG Zi-Lin1,GUAN Pei-Yi1,HUANG Cui1,CHEN Jian1,FANG Jia-Chuang1,LIU Chen-Rui1,GUO Zhang-Xi1,WANG Zi-Ming1,WANG Zhao-Hui1,2,LIU Jin-Shan1,2,TIAN Hui1,2,SHI Mei1,2,*   

  1. 1 College of Natural Resources and Environment, Northwest A&F University / Key Laboratory of Plant Nutrition and Agro-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China; 2 State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2025-03-15 Revised:2025-07-09 Accepted:2025-07-09
  • Contact: 石美, E-mail: meishi@nwafu.edu.cn E-mail:15129070882@163.com
  • Supported by:
    This study was supported by the National Natural Science Foundation of China (42377034), the National Key Research and Development Program of China (2022YFD1900702), and the China Agriculture Research System of MOF and MARA (CARS-03).

Abstract:

The aim of this study was to investigate the effects of zinc (Zn) fertilizer application on the uptake and accumulation of zinc and manganese (Mn) in wheat, and to analyze their interactions, providing a theoretical basis for enhancing Zn nutrition and regulating Mn nutrition through Zn fertilization. The research was conducted based on a long-term field experiment established in 2017 on calcareous soils in the dryland region of the Loess Plateau. Plant and soil samples were collected during two consecutive growing seasons (2022–2023 and 2023–2024). We measured the concentrations, accumulations, root acquisition efficiencies, and shoot transfer coefficients of Zn and Mn in various wheat organs, along with soil physicochemical properties, at both anthesis and maturity stages under different Zn fertilizer treatments to elucidate differences in Zn and Mn dynamics. Compared with the control (Zn 0), Zn fertilizer application significantly increased soil available Zn, with grain Zn concentration and total shoot Zn accumulation at maturity enhanced by 42.4% and 46.3%, respectively. At anthesis, Zn accumulation in all plant organs increased by 41.7%131.8%. Root Zn acquisition efficiency rose by 34.6%, while the root-to-shoot Zn transfer coefficient decreased by 30.5%, with no significant change in the grain Zn harvest index. In contrast, Zn fertilization reduced grain Mn concentration by 13.1% and Mn accumulation in various organs at maturity by 10.2%27.0%. At anthesis, Mn accumulation in stems declined by 7.7%, and both average root Mn acquisition efficiency and the root-to-shoot Mn transfer coefficient decreased by 22.1% and 32.2%, respectively. However, the Mn harvest index increased significantly by 11.2%. These results suggest that Zn fertilizer application effectively enhances Zn nutrition in wheat and indirectly regulates Mn uptake. The underlying mechanism appears to involve changes in the availability of soil micronutrients and the differential regulation of root acquisition efficiency for Zn and Mn during anthesis. These findings provide a theoretical foundation for optimizing fertilization strategies, enabling integrated Zn and Mn management, and ultimately improving both grain yield and nutritional quality in wheat production.

Key words: crop, micronutrient, fertilization, uptake, transfer

[1] 黄秋婵, 韦友欢, 石景芳. 微量元素锌对人体健康的生理效应及其防治途径. 微量元素与健康研究, 2009, 26(1): 68–70.

Huang Q C, Wei Y H, Shi J F. The physiological effects of znic trace elements on the human health and its measures of preventing. Stud Trace Elem Health, 2009, 26(1): 6870 (in Chinese with English abstract).

[2] Muthayya S, Rah J H, Sugimoto J D, Roos F F, Kraemer K, Black R E. The global hidden hunger indices and maps: an advocacy tool for action. PLoS One, 2013, 8: e67860.

[3] Erikson K M, Syversen T, Aschner J L, Aschner M. Interactions between excessive manganese exposures and dietary iron-deficiency in neurodegeneration. Environ Toxicol Pharmacol, 2005, 19: 415–421.

[4] Eshak E S, Muraki I, Imano H, Yamagishi K, Tamakoshi A, Iso H. Manganese intake from foods and beverages is associated with a reduced risk of type 2 diabetes. Maturitas, 2021, 143: 127–131.

[5] Morgounov A, Li H H, Shepelev S, Ali M, Flis P, Koksel H, Savin T, Shamanin V. Genetic characterization of spring wheat germplasm for macro-, microelements and trace metals. Plants (Basel), 2022, 11: 2173.

[6] 褚宏欣, 牟文燕, 党海燕, 王涛, 孙蕊卿, 侯赛宾, 黄婷苗, 黄倩楠, 石美, 王朝辉. 我国主要麦区小麦籽粒微量元素含量及营养评价. 作物学报, 2022, 48: 2853–2865.

Chu H X, Mu W Y, Dang H Y, Wang T, Sun R Q, Hou S B, Huang T M, Huang Q N, Shi M, Wang Z H. Evaluation on concentration and nutrition of micro-elements in wheat grains in major wheat production regions of China. Acta Agron Sin, 2022, 48: 2853–2865 (in Chinese with English abstract).

[7] Shi M, Hou S B, Sun Y Y, Dang H Y, Song Q Y, Jiang L G, Cao W, Wang H L, He X H, Wang Z H. Regional wheat grain manganese and its potential risks affected by soil pH and precipitation. J Clean Prod, 2020, 264: 121677.

[8] 王浩琳, 马悦, 李永华, 李超, 赵明琴, 苑爱静, 邱炜红, 何刚, 石美, 王朝辉. 基于小麦产量与籽粒锰含量的磷肥优化管理. 中国农业科学, 2022, 55: 1800–1812.

Wang H L, Ma Y, Li Y HLi C, Zhao M Q, Yuan A J, Qiu W H, He G, Shi M, Wang Z H. Optimal management of phosphorus fertilization based on the yield and grain manganese concentration of wheat. Sci Agric Sin, 2022, 55: 1800–1812 (in Chinese with English abstract).

[9] Chen X P, Zhang Y Q, Tong Y P, Xue Y F, Liu D Y, Zhang W, Deng Y, Meng Q F, Yue S C, Yan P, et al. Harvesting more grain zinc of wheat for human health. Sci Rep, 2017, 7: 7016.

[10] Liu H, Wang Z H, Li F C, Li K Y, Yang N, Yang Y E, Huang D L, Liang D L, Zhao H B, Mao H, et al. Grain iron and zinc concentrations of wheat and their relationships to yield in major wheat production areas in China. Field Crops Res, 2014, 156: 151160.

[11] Zhao A Q, Zhang L S, Ning P, Chen Q, Wang B N, Zhang F X, Yang X B, Zhang Y L. Zinc in cereal grains: concentration, distribution, speciation, bioavailability, and barriers to transport from roots to grains in wheat. Crit Rev Food Sci Nutr, 2022, 62: 7917–7928.

[12] 李广鑫, 赵鹏, 睢福庆, 刘红恩, 高巍, 秦世玉, 李畅. 施锌对不同品种小麦锌吸收分配的影响. 农业资源与环境学报, 2020, 37: 216–325.

Li G X, Zhao P, Sui F Q, Liu H E, Gao W, Qin S Y, Li CEffects of zinc application on zinc uptake and distribution among different wheat cultivars. J Agric Resour Environ, 2020, 37: 216–225 (in Chinese with English abstract).

[13] 国春慧, 赵爱青, 陈艳龙, 田霄鸿, 李宏云, 李硕. 锌肥种类和施用方式对小麦生育期内土壤不同形态Zn含量的影响. 西北农林科技大学学报(自然科学版), 2015, 43(7): 185191.

Guo C H, Zhao A Q, Chen Y L, Tian X H, Li H Y, Li S. Effects of Zn source and application method on contents of different Zn forms during wheat growth. J Northwest A&F Univ (Nat Sci Edn), 2015, 43(7): 185191 (in Chinese with English abstract).

[14] 丁玉兰, 黄翠, 方佳创, 李文虎, 王星舒, 张学美, 党海燕, 孙蕊卿, 杨珺, 徐隽峰, . 旱地小麦锌吸收转移与籽粒锌含量的关系. 植物营养与肥料学报, 2024, 30: 1650–1664.

Ding Y L, Huang C, Fang J C, Li W H, Wang X S, Zhang X M, Dang H Y, Sun R Q, Yang J, Xu J F, et al. Relationships of grain zinc concentration with wheat zinc uptake and translocation in dryland. J Plant Nutr Fert, 2024, 30: 1650–1664 (in Chinese with English abstract).

[15] Pearson J N, Rengel Z, Jenner C F, Graham R D. Transport of zinc and manganese to developing wheat grains. Physiol Plant, 1995, 95: 449–455.

[16] Pearson J N, Rengel Z, Jenner C F, Graham R D. Manipulation of xylem transport affects Zn and Mn transport into developing wheat grains of cultured ears. Physiol Plant, 1996, 98: 229–234.

[17] Kamaral C, Neate S M, Gunasinghe N, Milham P J, Paterson D J, Kopittke P M, Seneweera S. Genetic biofortification of wheat with zinc: opportunities to fine-tune zinc uptake, transport and grain loading. Physiol Plant, 2022, 174: e13612.

[18] Mani A, Sankaranarayanan K. In silico analysis of natural resistance-associated macrophage protein (NRAMP) family of transporters in rice. Protein J, 2018, 37: 237–247.

[19] Sachse B, Kolbaum A E, Ziegenhagen R, Andres S, Berg K, Dusemund B, Hirsch-Ernst K I, Kappenstein O, Müller F, Röhl C, et al. Dietary manganese exposure in the adult population in Germany-what does it mean in relation to health risks. Mol Nutr Food Res, 2019, 63: e1900065.

[20] Pedas P, Ytting C K, Fuglsang A T, Jahn T P, Schjoerring J K, Husted S. Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol, 2008, 148: 455–466.

[21] 黄宁, 王朝辉, 王丽, 马清霞, 张悦悦, 张欣欣, 王瑞. 我国主要麦区主栽高产品种产量差异及其与产量构成和氮磷钾吸收利用的关系. 中国农业科学, 2020, 53: 8193.

Huang N, Wang Z H, Wang L, Ma Q X, Zhang Y Y, Zhang X X, Wang R. Yield variation of winter wheat and its relationship to yield components, NPK uptake and utilization of leading and high yielding wheat cultivars in main wheat production regions of China. Sci Agric Sin, 2020, 53: 8193 (in Chinese with English abstract).

[22] 薛欣月, 于雪然, 刘晓刚, 马嘉欣, 田蕾, 李培富. 水稻锌吸收、转运、累积机理研究进展. 生物技术通报, 2022, 38(4): 29–43.

Xue X Y, Yu X R, Liu X G, Ma J X, Tian L, Li P F. Research progress in absorption, transportation and accumulation mechanism of zinc in rice. Biotechnol Bull, 2022, 38(4): 29–43 (in Chinese with English abstract).

[23] 黄钻华, 苏金根. 小麦基施锌肥效果试验. 基层农技推广, 2024, 12(3): 16–19.

Huang Z H, Su J GExperimental study on the effect of applying zinc fertilizer to wheat. Prim Agric Technol Ext, 2024, 12(3): 16–1(in Chinese).

[24] 汪洪, 刘新保, 褚天铎, 杨清, 李春花. 锌肥对作物产量、子粒锌及土壤有效锌含量的后效. 土壤肥料, 2003, (1): 36.

Wang H, Liu X B, Chu T D, Yang Q, Li C H. Residual effect of zinc application on crop yield, zinc concentration in crop grain and soil available zinc. Soil Fert, 2003, (1): 36 (in Chinese).

[25] 陈玲, 田霄鸿, 李峰, 李生秀. 碳酸钙和锌对五种基因型小麦生长、锌吸收及营养液中HCO3-含量和pH的影响. 植物营养与肥料学报, 2006, 12: 523–529.

Chen L, Tian X H, Li F, Li S X. Effects of CaCO3 and Zn on growth and zn uptake of five winter wheat genotypes as well as HCO3- concentration and pH in nutrient solution. Plant Nutr Fert Sci, 2006, 12: 523–52(in Chinese with English abstract).

[26] 薛盈文, 李玉春, 叶永柏, 郭伟. 黑龙江省小麦种植区划的限制因素分析. 现代化农业, 2023, (8): 21–24.

Xue Y W, Li Y C, Ye Y B, Guo W. Analysis of restrictive factors in wheat planting zoning in Heilongjiang province. Mod Agric, 2023, (8): 21–2(in Chinese).

[27] 李孟华, 王朝辉, 李强, 戴健, 高雅洁, 靳静静, 曹寒冰, 王森. 低锌旱地土施锌肥对小麦产量和锌利用的影响. 农业环境科学学报, 2013, 32: 2168–2174.

Li M H, Wang Z H, Li Q, Dai J, Gao Y J, Jin J J, Cao H B, Wang S. Effects of soil Zn application on grain yield and Zn utilization of wheat in Zn-deficient dryland soils. J Agro-Environ Sci, 2013, 32: 2168–2174 (in Chinese with English abstract).

[28] 罗一诺, 李文虎, 李艳霏, 张思琦, 牟文燕, 黄宁, 孙蕊卿, 丁玉兰, 佘文婷, 李小涵, . 我国新育成小麦品种()籽粒锌含量及影响因素. 植物营养与肥料学报, 2025, 31: 32–47.

Luo Y N, Li W H, Li Y F, Zhang S Q, Mu W Y, Huang N, Sun R Q, Ding Y L, She W T, Li X H, et al. Zinc concentration and its influencing factors in grain of newly developed wheat cultivars (lines) in ChinaJ Plant Nutr Fert, 2025, 31: 32–47 (in Chinese with English abstract).

[29] Pearson J N, Jenner C F, Rengel Z, Graham R D. Differential transport of Zn, Mn and sucrose along the longitudinal axis of developing wheat grains. Physiol Plant, 1996, 97: 332–338.

[30] 姚澄, 周天宇, 樊广萍, 周东美, 史高玲, 沈文忠, 张绪美, 陈未, 李江叶, 高岩. 不同锌肥对土壤镉有效性及小麦镉吸收转运的影响. 农业环境科学学报, 2024, 43: 19–29.

Yao C, Zhou T Y, Fan G P, Zhou D M, Shi G L, Shen W Z, Zhang X M, Chen W, Li J Y, Gao Y. Effects of different zinc fertilizers on soil cadmium availability and cadmium uptake and transport in wheat. J Agro-Environ Sci, 2024, 43: 19–29 (in Chinese with English abstract).

[31] Milner M J, Seamon J, Craft E, Kochian L V. Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot, 2013, 64: 369–381.

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!