Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Characteristics of light distribution in maizeǁalfalfa intercropping systems and their effects on plant traits and yield

YANG Shu, BAI Wei*, CAI Qian*,DU Gui-Juan   

  1. Tillage and Cultivation Research Institute, Liaoning Academy of Agricultural Sciences / Key Laboratory of Water-Saving Agriculture of Northeast of Ministry of Agriculture and Rural Affairs, Shenyang 110161, Liaoning, China
  • Received:2025-01-16 Revised:2025-06-01 Accepted:2025-06-01 Published:2025-06-10
  • Supported by:
    This study was supported by the National Key Research and Development Program of China (2022YFD1500600), the National Natural Science Foundation of China (32101855), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA28090202), the Liaoning Revitalization Talents Program (XLYC2401002) and the Subject Construction Program of Liaoning Academy of Agricultural Sciences (120520303).

Abstract:

To elucidate the light resource utilization mechanism in maize‖alfalfa intercropping systems and identify the optimal row configuration for dryland agriculture in Northeast China, a field experiment was conducted in Fuxin, Liaoning—a representative dryland region—during 2021–2022. Five planting patterns were evaluated: intercropping of 2 rows of maize with 2 rows of alfalfa (2M2A), 2 rows of maize with 4 rows of alfalfa (2M4A), 4 rows of maize with 4 rows of alfalfa (4M4A), as well as sole maize (M) and sole alfalfa (A). The effects of intercropping on light distribution, plant traits, and yield were investigated. The results showed that the photosynthetically active radiation (PAR) within the alfalfa canopy was significantly lower than that within the maize canopy. Intercropping improved the light environment of maize: compared with sole maize, light transmittance at the ear layer increased by 28.8%–178.4%, and a similar trend was observed at the canopy base, though differences were not statistically significant. In contrast, the light environment in intercropped alfalfa deteriorated, with canopy light transmittance reduced by 21.4%–59.2% and bottom light transmittance reduced by 40.3%–50.3% compared to sole alfalfa. Intercropping significantly increased stem diameter, leaf area per plant at the filling stage, and ear length of maize, while ear diameter slightly increased and bald tip length slightly decreased. Maize yield in intercropping systems increased by 13.29%–28.22%, mainly due to a significant increase in ear number and grains per ear. However, alfalfa hay yield decreased by 20.91%–49.20% compared to sole alfalfa. In summary, intercropping altered the light distribution within the maize ‖ alfalfa system. An appropriate row configuration can balance light competition between the two crops, improve plant traits, and enhance yield. Among the systems tested, 2M4A showed the highest land equivalent ratio (1.01), indicating a moderate intercropping advantage, and its net economic benefit was 0.8% and 10.5% higher than that of sole maize and sole alfalfa, respectively. Although the land equivalent ratio of 4M4A was 1.00 (no intercropping advantage), its net benefit was still 1.9% and 11.8% higher than that of sole maize and sole alfalfa. Considering both intercropping advantages and economic returns, 2M4A is recommended as a suitable intercropping model for dryland areas in Northeast China.

Key words: maize, alfalfa, light distribution, plant traits, yield

[1] 周海燕, 柴强, 黄高宝, 白锦龙. 绿洲灌区典型间作模式的产量和光能利用效率. 甘肃农业大学学报, 2012, 47(6): 68–73.
Zhou H Y, Chai Q, Huang G B, Bai J L. The yield and light use efficiency of different intercropping systems in the Hexi oasis irrigation area. J Gansu Agric Univ, 2012, 47(6): 68–73 (in Chinese with English abstract).

[2] Shen L, Wang X Y, Liu T T, Wei W W, Zhang S, Keyhani A B, Li L H, Zhang W. Border row effects on the distribution of root and soil resources in maize-soybean strip intercropping systems. Soil and Tillage Res, 2023, 233: 105812.

[3] 孙翔龙, 冯良山, 杨宁, 张诗行, 夏桂敏. 辽西半干旱区玉米花生间作对不同降水年型下产量与水分利用效率的影响. 沈阳农业大学学报, 2024, 55: 530–537.

Sun X L, Feng L S, Yang N, Zhang S H, Xia G M. Effects of maize and peanut intercropping on yield and water use efficiency under different precipitation years in semi-arid region of western Liaoning. J Shenyang Agric Univ, 2024, 55: 530–537 (in Chinese with English abstract).

[4] Tao D X, Delgado-Baquerizo M, Zhou G Y, Revillini D, He Q, Swanson C S, Gao Y Z. Maize-alfalfa intercropping alleviates the dependence of multiple ecosystem services on nonrenewable fertilization. Agric Ecosyst Environ, 2024, 373: 109141.

[5] 杨惠. 苜蓿玉米间作高效生产技术助力优质饲草供应. (2024-09-02) [2025-03-24]. http://www.agri.cn/zx/nyyw/202409/t20240902_8666979.htm.

Yang H. The efficient production technology of alfalfa corn intercropping helps the supply of high-quality forage grass. (2024-09-02) [2025-03-24]. http://www.agri.cn/zx/nyyw/202409/t20240902_8666979.htm (in Chinese).

[6] 陈彦龙, 齐帅, 许瑞轩, 张蓓, 王恕平, 董嘉莉, 曹文侠. 河西走廊玉米-苜蓿间作体系行数与密度对玉米生产性能的影响. 草地学报, 网络首发[2025-02-14], https://link.cnki,net/urlid/11.3362.S.20250214.1351.002.

Chen Y L, Qi S, Xu R X, Zhang B, Wang S P, Dong J L, Cao W X. Effects of planting row number and density on maize performance in Hexi corridor corn-alfalfa intercropping system. Acta Agrest Sin, Published online [2025-02-14], https://link.cnki,net/urlid/11.3362.S.20250214.1351.002 (in Chinese with English abstract).

[7] 张桂国, 董树亭, 杨在宾. 苜蓿+玉米间作系统产量表现及其种间竞争力的评定. 草业学报, 2011, 20(1): 22–30.

Zhang G G, Dong S T, Yang Z B. Production performance of alfalfa+maize intercropping systems and evaluation of interspecies competition. Acta Pratac Sin, 2011, 20(1): 22–30 (in Chinese with English abstract).

[8] 邵泽强, 刘书奇, 勾千冬, 依德萍, 陆文龙. 施氮和种植模式对玉米/紫花苜蓿间作体系中作物产量、吸氮量和根系形态的影响. 东北农业科学, 2023, 48(4): 6–11.

Shao Z Q, Liu S Q, Gou Q D, Yi D P, Lu W L. Effects of nitrogen application and planting patterns on crop yield, nitrogen uptake and root morphology in a maize/alfalfa intercropping system. J Northeast Agric Sci, 2023, 48(4): 6–11 (in Chinese with English abstract).

[9] 李玉玺, 王帅, 王立波, 刘凌云, 周昶延, 何东锐, 李芳慧, 梁政帅. 玉米单作及间作紫花苜蓿对产量性状及白浆土供肥特性的影响. 玉米科学, 2018, 26(4): 126–131.
Li Y X, Wang S, Wang L B, Liu L Y, Zhou C Y, He D R, Li F H, Liang Z S. Effects of maize monoculture and intercropped with Medicago sativa L. on yield of maize and nutrients of albic soil. J Maize Sci, 2018, 26(4): 126–131 (in Chinese with English abstract).

[10] 李双伟, 朱俊奇, Jochem B.EVERS, Wopke VAN DER WERF, 郭焱, 李保国, 马韫韬. 基于植物功能-结构模型的玉米-大豆条带间作光截获行间差异研究. 智慧农业(中英文), 2022, 4(1): 97–109.

Li S W, Zhu J Q, Evers J B, Van der Werf W, Guo Y, Li B G, Ma Y T. Estimating the differences of light capture between rows based on functional-structural plant model in simultaneous maize-soybean strip intercropping. Smart Agric, 2022, 4(1): 97–109 (in Chinese with English abstract).

[11] 王志梁, 任媛媛, 张岁岐. 黄土高原不同玉米-大豆间作模式对玉米生长发育的影响. 水土保持通报, 2014, 34(6): 321–326.
Wang Z L, Ren Y Y, Zhang S Q. Effect of maize-soybean intercropping modes on maize growth on Loess Plateau. Bull Soil Water Conserv, 2014, 34(6): 321–326 (in Chinese with English abstract).

[12] 武晶, 陈梦, 汪直华, 杨继芝, 李燕丽, 吴雨珊, 杨文钰. 带状间作不同带间距对玉米光能利用的影响. 中国农业科学, 2023, 56: 4648–4659.
Wu J, Chen M, Wang Z H, Yang J Z, Li Y L, Wu Y S, Yang W Y. Effect of different strip distances on light energy utilization in strip intercropping maize. Sci Agric Sin, 2023, 56: 4648–4659 (in Chinese with English abstract).

[13] Yang H, Zhang W P, Xu H S, Yu R P, Su Y, Surigaoge S, Wang P X, Yang X, Lambers H, Li L. Trade-offs and synergies of plant traits co-drive efficient nitrogen use in intercropping systems. Field Crops Res, 2023, 302: 109093.

[14] 蔡倩, 孙占祥, 王文斌, 白伟, 杜桂娟, 张悦, 张哲, 冯晨, 向午燕, 赵凤艳. 辽西半干旱区玉米大豆间作对作物产量及水分利用的影响. 中国农业气象, 2022, 43: 551–562.

Cai Q, Sun Z X, Wang W B, Bai W, Du G J, Zhang Y, Zhang Z, Feng C, Xiang W Y, Zhao F Y. Yield and water use of maize/soybean intercropping systems in semi-arid western Liaoning. Chin J Agrometeorol, 2022, 43: 551–562 (in Chinese with English abstract).

[15] 张忠华, 尹士芳, 谢宾. 大豆玉米间作对作物生长特性及产量效益的影响. 中国农技推广, 2024, 40(3): 44–47.

Zhang Z H, Yin S F, Xie B. Effect of maize/soybean intercropping on crop growth characteristics and yield benefits. China Agric Technol Extens, 2024, 40(3): 44–47(in Chinese).

[16] 焦念元, 李亚辉, 杨潇, 尹飞, 马超, 齐付国, 刘领, 熊瑛. 玉米/花生间作行比和施磷对玉米光合特性的影响. 应用生态学报, 2016, 27: 2959–2967.
Jiao N Y, Li Y H, Yang X, Yin F, Ma C, Qi F G, Liu L, Xiong Y. Effects of maize/peanut intercropping row ratio and phosphate fertilizer on photosynthetic characteristics of maize. Chin J Appl Ecol, 2016, 27: 2959–2967 (in Chinese with English abstract).

[17] 郑皓远, 陈喜凤, 郭丹阳, 陈蕊, 玛丽亚穆·吾斯曼, 刘颖, 谷岩. 条带间作对玉米大豆光能利用特征、产量及经济收入的影响. 东北农业科学, 2023, 48(6): 1–5.

Zheng H Y, Chen X F, Guo D Y, Chen R, Mariamu·Usman, Liu Y, Gu Y. Effects of light energy utilization characteristics, yield and economic output of maize-soybean strip intercropping. J Northeast Agric Sci, 2023, 48(6): 1–5 (in Chinese with English abstract).

[18] 高超, 陈平, 杜青, 付智丹, 罗凯, 林萍, 李易玲, 刘姗姗, 雍太文, 杨文钰. 播期、密度对带状间作大豆茎叶生长及产量形成的影响. 作物学报, 2023, 49: 3090–3099.
Gao C, Chen P, Du Q, Fu Z D, Luo K, Lin P, Li Y L, Liu S S, Yong T W, Yang W Y. Effects of sowing date and density on stem, leaf growth, and yield formation in strip intercropping soybean. Acta Agron Sin, 2023, 49: 3090–3099 (in Chinese with English abstract).

[19] 乔寅英, 柴强. 带型及施氮水平对玉米间作豌豆群体光分布的影响. 甘肃农业大学学报, 2017, 52(6): 33–38.
Qiao Y Y, Chai Q. Effect of band pattern and nitrogen application levels on light distribution in maize-pea intercropping systems. J Gansu Agric Univ, 2017, 52(6): 33–38 (in Chinese with English abstract).

[20] 宁自力, 王贝贝, 谭先明, 滕一鸣, 杨文钰, 杨峰. 玉米行向配置对带状套作大豆光合特性、叶片结构及产量的影响. 中国生态农业学报(中英文), 2023, 31: 1038–1052.
Ning Z L, Wang B B, Tan X M, Teng Y M, Yang W Y, Yang F. Effect of maize row orientation configurations on the photosynthetic characteristics, leaf structure and yield of soybean in relay strip intercropping systems. Chin J Eco-Agric, 2023, 31: 1038–1052 (in Chinese with English abstract).

[21] 刘涵, 丁迪, 汪江涛, 郑宾, 王笑笑, 朱晨旭, 刘娟, 刘领, 付国占, 焦念元. 玉米穗型与种植密度对玉米花生间作种间竞争的协调效应. 中国农业科学, 2024, 57: 3758–3769.
Liu H, Ding D, Wang J T, Zheng B, Wang X X, Zhu C X, Liu J, Liu L, Fu G Z, Jiao N Y. Coordinated effects of maize ear type and planting density on interspecific competition in maize-peanut intercropping system. Sci Agric Sin, 2024, 57: 3758–3769 (in Chinese with English abstract).

[22] 吴玉环, 王自奎, 刘亚男, 马千虎. 带幅设计对玉米/苜蓿间作群体光环境特征及光能利用效率的影响. 草业学报, 2022, 31(3): 144–155.
Wu Y H, Wang Z K, Liu Y N, Ma Q H. Effects of row configuration on characteristics of the light environment and light use efficiency in maize/alfalfa intercropping. Acta Pratac Sin, 2022, 31(3): 144–155 (in Chinese with English abstract).

[23] Wang R N, Sun Z X, Zhang L Z, Yang N, Feng L S, Bai W, Zhang D S, Wang Q, Evers J B, Liu Y, et al. Border-row proportion determines strength of interspecific interactions and crop yields in maize/peanut strip intercropping. Field Crops Res, 2020, 253: 107819.

[24] Wang Z S, Dong B, Stomph T J, Evers J B, Van der Putten P E L, Ma H H, Missale R, Van der Werf W. Temporal complementarity drives species combinability in strip intercropping in the Netherlands. Field Crops Res, 2023, 291: 108757.

[25] 刘朝巍, 张恩和, 谢瑞芝, 刘武仁, 李少昆. 玉米宽窄行交替休闲保护性耕作的根系和光分布特征研究. 中国生态农业学报, 2012, 20: 203–209.

Liu C W, Zhang E H, Xie R Z, Liu W R, Li S K. Effect of conservation tillage of wide/narrow row planting on maize root and transmittance distribution. Chin J Eco-Agric, 2012, 20: 203–209 (in Chinese with English abstract).

[26] 刚永和, 张海博, 牛勇, 杜江, 陈永珑, 萨仁花. 青海东部农业干旱区不同播种方式对紫花苜蓿农艺性状和生产性能的影响. 草业科学, 2021, 38: 327–334.
Gang Y H, Zhang H B, Niu Y, Du J, Chen Y L, Sa R H. Effects of different sowing methods on the agronomic and productive properties of alfalfa in the agricultural arid area of Eastern Qinghai. Pratacultural Sci, 2021, 38: 327–334 (in Chinese with English abstract).

[27] 王昀杰, 樊志龙, 张刁亮, 毛守发, 胡发龙, 殷文, 柴强. 不同灌水量下玉米的产量可持续性对间作绿肥的响应. 作物学报, 2024, 50: 2562–2574.

Wang Y J, Fan Z L, Zhang D L, Mao S F, Hu F L, Yin W, Chai Q. Response of the yield sustainability of maize with different irrigated quota to intercropped green manure. Acta Agron Sin, 2024, 50: 2562–2574 (in Chinese with English abstract).

[28] 刘铁宁, 徐彩龙, 谷利敏, 董树亭. 高密度种植条件下去叶对不同株型夏玉米群体及单叶光合性能的调控. 作物学报, 2014, 40: 143–153.

Liu T N, Xu C L, Gu L M, Dong S T. Effects of leaf removal on canopy apparent photosynthesis and individual leaf photosynthetic characteristics in summer maize under high plant density. Acta Agron Sin, 2014, 40: 143–153 (in Chinese with English abstract).

[29] 任媛媛, 张莉, 郁耀闯, 张彦军, 张岁岐. 大豆种植密度对玉米/大豆间作系统产量形成的竞争效应分析. 作物学报, 2021, 47: 1978–1987.
Ren Y Y, Zhang L, Yu Y C, Zhang Y J, Zhang S Q. Competitive effect of soybean density on yield formation in maize/soybean intercropping systems. Acta Agron Sin, 2021, 47: 1978–1987 (in Chinese with English abstract).

[30] Zhang Y, Sun Z X, Su Z C, Du G J, Bai W, Wang Q, Wang R N, Nie J Y, Sun T R, Feng C, et al. Root plasticity and interspecific complementarity improve yields and water use efficiency of maize/soybean intercropping in a water-limited condition. Field Crops Res, 2022, 282: 108523.

[31]蔺芳, 刘晓静, 童长春, 吴勇. 间作对不同类型饲料作物光能利用特征及生产能力的影响. 应用生态学报, 2019, 30: 3452–3462.
Lin F, Liu X J, Tong C C, Wu Y. Effects of intercropping on light energy utilization characteristics and productivity of different feed crops. Chin J Appl Ecol, 2019, 30: 3452–3462 (in Chinese with English abstract).

[32]龙雪芬, 孙雨萌, 张浩, 赵曦然, 杨春. 我国苜蓿进口依赖性分析及中西苜蓿贸易展望. 中国饲料, 2025, (5): 138–148. 

Long X F, Sun Y M, Zhang H, Zhao X R, Yang C. Analysis of China’s alfalfa import dependence and prospects for Sino Western alfalfa trade. China Feed, 2025, (5): 138–148 (in Chinese with English abstract).

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!