Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica

   

Extraction of planting structure information in the Baojixia irrigation district based on planet scope satellite and UAV multispectral imagery 

LUO Zhen1,2,YANG Ni1,2,SHANG Xiao-Hui1,2,YU Xin-Cheng1,2,ZHU Jing-Yi1,2,YANG Guang1,2,HU Xiao-Tao1,2,*   

  1. 1 College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; 2 Key Laboratory of Arid Land Agricultural Soil and Water Engineering, Ministry of Education, Northwest A&F University, Yangling 712100, Shaanxi, China
  • Received:2025-05-10 Revised:2025-08-13 Accepted:2025-08-13 Published:2025-08-25
  • Supported by:
    This study was supported by National-level Innovative Training Project (202410712267) and the National Natural Science Foundation of China (U2243235)

Abstract:

High-resolution mapping of crop planting structures is crucial for ensuring food security and optimizing agricultural policies. However, in practical applications, extracting crop planting structures using multi-source remote sensing data faces challenges such as satellite–UAV collaboration issues due to spectral resolution differences, and the interference of mixed pixels in satellite imagery during area information extraction. This study proposes a method for extracting crop planting structures based on UAV multispectral data with Planet Scope satellite imagery. Taking wheat, maize, grapes, and kiwifruit in the Baojixia Irrigation District as case crops, spatial distribution and area information were extracted. First, satellite spectral bands were corrected by calculating the reflectance ratio between satellite and UAV pixels, thereby refining the threshold for crop distribution extraction. Second, UAV images were classified using machine learning algorithms to estimate the proportion of pure crop areas within mixed satellite pixels. Finally, a genetic algorithm-optimized random forest model was employed to establish a quantitative relationship between vegetation indices and area weights in mixed pixels. The results showed that in the crop distribution map (6 m resolution) generated using the multi-source remote sensing approach, the number of overlapping pixels decreased by 35.75% compared to results from satellite imagery alone, demonstrating that integrating multi-source data can effectively mitigate the issue of same spectrumdifferent objects.” Among the crops, wheat and maize had the most accurate area extraction. Compared with single-temporal satellite images, the relative error rates for wheat and maize in representative regions decreased by 19.17% and 38.49%, respectively. Overall, the relative error rates for wheat, maize, grapes, and kiwifruit area estimates were -4.83%, 0.51%, 6.55%, and 8.79%, respectively. The cross-scale collaborative observation approach from UAV to satellite proposed in this study provides technical and data support for crop management strategies in irrigation districts. It offers new perspectives for extending crop spatial distribution and area extraction from the field scale to the irrigation district scale, and contributes to advancing precision agriculture technologies in irrigated regions.

Key words: planet scope satellite, unmanned aerial vehicle (UAV), multispectral data, planting structure, supervised classification, random forest optimized by genetic algorithm

[1] Guo W, Huang Y M, Huang Y D, Li Y L, Song X X, Shen J K, Qi X P, Zhang B C, Zhu Z L, Peng S Z, et al. Develop agricultural planting structure prediction model based on machine learning: the aging of the population has prompted a shift in the planting structure toward food crops. Comput Electron Agric, 2024, 221: 108941.

[2] Yang R, Qi Y, Zhang H, Wang H, Zhang J, Ma X, Zhang J, Ma C. A study on the object-based high-resolution remote sensing image classification of crop planting structures in the Loess Plateau of eastern Gansu province. Remote Sens, 2024, 16: 2479.

[3] 秦肖伟, 程博, 杨志平, 李林, 董文, 张新, 杨树文, 靳宗义, 薛庆. 基于时序遥感影像的西南山区地块尺度作物类型识别. 地球信息科学学报, 2023, 25: 654668.
Qin X W, Cheng B, Yang Z P, Li L, Dong W, Zhang X, Yang S W, Jin Z Y, Xue Q. Crop type identification at field scale in southwestern mountainous regions based on time-series remote sensing images. J Geo Inf Sci, 2023. 25: 654–668 (in Chinese with English abstract).

[4] Peña-Barragán J M, Ngugi M K, Plant R E, Six J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens Environ, 115: 1301–1316.

[5] 李鑫杨, 卢赫宇. 典型作物种植结构遥感提取: 以赤峰市宁城县与喀喇沁旗为例农业灾害研究, 2021, 11(8): 142–143.
Li X Y, Lu H Y. Extraction of typical crop structure based on remote sensing: a case study of Ningcheng and Kalaqin county, Chifeng. J Agric Catastrophology, 2021, 11(8): 142–143 (in Chinese with English abstract).

[6] 季富华, 刘佳, 王利民. 农作物类型遥感识别算法及国产高分卫星应用示例. 中国农业资源与区划, 2021, 42(7): 254–268.
Ji F H, Liu J, Wang L M. Summary of remote sensing algorithm in crop type identification and its application based on Gaofen satellites. Chin J Agric Resour Reg Plan, 2021, 42(7): 254–268 (in Chinese with English abstract).

[7] 钟喆, 陈鹏, 何卫军, 张生, 张雯钧. 基于高分六号卫星WFV数据的甘蔗种植面积提取方法研究. 大众科技, 2024, 26(6): 17–20.
Zhong Z, Chen P, He W J, Zhang S, Zhang W J. Research on extraction method of sugarcane planting area based on WFV data of Gaofen-6 satellite. Pop Sci Technol, 2024, 26(6): 17–20 (in Chinese with English abstract).

[8] 刘学刚, 李峰, 王倩. 基于GF-1卫星影像的青岛市冬小麦种植面积变化动态监测. 湖南农业科学, 2024, (7): 7480.
Liu X G, Li F, Wang Q. Dynamic monitoring of winter wheat planting area changes in Qingdao city based on GF-1 satellite imagery. Hunan Agric Sci, 2024, (7), 74–80 (in Chinese with English abstract).

[9] 李淑贞, 徐大伟, 范凯凯陈金强, 佟旭泽, 辛晓平, 王旭. 基于无人机与卫星遥感的草原地上生物量反演研究. 遥感技术与应用, 2022, 37: 272278.
Li S Z, Xu D W, Fan K K, Chen J Q, Tong X Z, Xin X P, Wang X. Inversion of aboveground biomass in grasslands based on UAV and satellite remote sensing. Remote Sens Technol Appl, 2022, 37: 272–278 (in Chinese with English abstract).

[10] 林荣福, 张楠, 周艳, 林峰. 基于GF-5高光谱遥感的农作物种植结构监测研究. 测绘与空间地理信息, 2024, 47(增刊1): 224226.
Lin R F, Zhang N, Zhou Y, Lin F. Research on monitoring of crop planting structure based on GF-5 hyperspectral remote sensing. Geomat Spatial Inf Technol2024, 47(S1): 224226 (in Chinese with English abstract).

[11] 袁站芳付瑜杨文军多时相GF-1影像在农作物种植结构提取中的应用. 测绘与空间地理信息, 2020, 43(增刊1): 120–122.
Yuan Z F, Fu Y, Yang W J. Application of multi-temporal GF-1 image in crop planting structure extraction. Geomat Spatial Inf Technol, 2020, 43(S1): 120–122 (in Chinese with English abstract).

[12] 陈雨琪, 席瑞, 陈佳麒, 章健, 高国军, 刘海威, 盛莉, 王福, 刘占宇. 基于多时相Sentinel-2卫星影像的冬小麦面积提取. 杭州师范大学学报(自然科学版), 2024, 23: 209217.
Chen Y Q, Xi R, Chen J Q, Zhang J, Gao G J, Liu H W, Sheng L, Wang F, Liu Z Y. Extraction of winter wheat area based on multi-temporal Sentinel-2 satellite images. J Hangzhou Norm Univ (Nat Sci Edn)2024, 23: 209217 (in Chinese with English abstract).

[13] 郝震, 赵红莉, 蒋云钟. 基于改进的NDVI密度分割方法的冬小麦面积信息提取. 南水北调与水利科技, 2017, 15(3): 6772.
Hao Z, Zhao H L, Jiang Y Z. Winter wheat area information extraction based on the improved NDVI density segmentation method. South-to-North Water Transfers Water Sci Technol, 2017, 15(3): 6772 (in Chinese with English abstract).

[14] 边增淦, 王文, 江渊. 黑河流域中游地区作物种植结构的遥感提取. 地球信息科学学报, 2019, 21: 1629–1641.
Bian Z G, Wang W, Jiang Y. Remote sensing of cropping structure in the middle reaches of the Heihe River Basin. J Geo Inf Sci, 2019, 21: 1629–1641 (in Chinese with English abstract).

[15] 李晓雅, 田昕, 段涛, 曹晓明, 杨凯捷, 卢琦, 王锋. 融合无人机和卫星影像的温带疏林草原木本和草本植物覆盖度遥感估算. 遥感学报, 2023, 27: 21392152.
Li X Y, Tian X, Duan T, Cao X M, Yang K J, Lu Q, Wang F. Estimation of fractional woody and herbaceous vegetation cover in temperate sparse forest grassland using fusion of UAV and Satellite imagery. Natl Remote Sens Bull, 2023, 27: 21392152 (in Chinese with English abstract).

[16] 孙越顾祝军李栋梁无人机与卫星影像的叶面积指数遥感反演研究测绘科学2021, 46: 106–112.
Sun Y, Gu Z J, Li D L. Study on remote sensing retrieval of leaf area index based on unmanned aerial vehicle and satellite image. Sci Surv Mapp, 2021, 46: 106–112 (in Chinese with English abstract).

[17] He J Q, Jia Y L, Li Y, Biswas A, Feng H, Yu Q, Wu S F, Yang G, Siddique K H M. Regional-scale precision mapping of cotton suitability using UAV and satellite data in arid environments. Agric Water Manag, 2025, 307: 109–215.

[18] Maimaitijiang M, Sagan V, Sidike P, Daloye A M, Erkbol H, Fritschi F B. Crop monitoring using satellite/UAV data fusion and machine learning. Remote Sens, 2020, 12: 1357.

[19] 罗奇斌, 何亮, 郭诗园, 谢钟书, 王昭颖, 葛刚, 李述. 基于卫星和无人机影像的浮叶植被覆盖度反演. 水生生物学报, 2025, 49: 113–121.
Luo Q B, He L, Guo S Y, Xie Z S, Wang Z Y, Ge G, Li S. Inversion of floating leaf vegetation coverage based on satellite images and drone images. Acta Hydrobiol Sin, 2025, 49: 113–121 (in Chinese with English abstract).

[20] 奚雪, 赵庚星, 高鹏, 崔昆, 李涛. 基于Sentinel卫星及无人机多光谱的滨海冬小麦种植区土壤盐分反演研究: 以黄三角垦利区为例. 中国农业科学, 2020, 53: 50055016.
Xi X, Zhao G X, Gao P, Cui K, Li T. Soil salinity inversion in coastal winter wheat planting areas based on Sentinel satellite and UAV multispectral imagery: a case study of the Kenli district in the Yellow River delta. Sci Agric Sin, 2020, 53: 5005–5016 (in Chinese with English abstract).

[21] 陈俊英王新涛张智韬, 韩佳, 姚志华, 魏广飞. 基于无人机—卫星遥感升尺度的土壤盐渍化监测方法农业机械学报, 2019, 50(12): 161–169.
Chen J Y, Wang X T, Zhang Z T, Han J, Yao Z H, Wei G F. Soil salinization monitoring method based on UAV-satellite remote sensing scale-up. Trans CSAM, 2019, 50(12): 161–169 (in Chinese with English abstract).

[22] 郭交, 白静远, 叶永凯, 韩超越, 张伟涛. 杨凌农业示范区经济作物种植结构多源多时相遥感数据集. 中国科学数据, 2023, 8: 334–343.
Guo J, Bai J Y, Ye Y K, Han C Y, Zhang W T. A dataset of multi-source and multi-temporal remote sensing data of cash crop planting structure in Yangling agricultural demonstration zone. China Sci Data, 2023, 8: 334–343 (in Chinese with English abstract).

[23] Roy D P, Huang H Y, Houborg R, Martins V S. A global analysis of the temporal availability of Planet Scope high spatial resolution multi-spectral imagery. Remote Sens Environ, 2021, 264: 112586.

[24] Minallah N, Tariq M, Aziz N, Khan W, Rehman A U, Belhaouari S B. On the performance of fusion based Planet-Scope and Sentinel-2 data for crop classification using inception inspired deep convolutional neural network. PLoS One, 2020, 15: e0239746.

[25] Rehman T U, Alam M, Minallah N, Khan W, Frnda J, Mushtaq S, Ajmal M. Long short term memory deep net performance on fused Planet-Scope and Sentinel-2 imagery for detection of agricultural crop. PLoS One, 2023, 18: e0271897.

[26] Anul Haq M. Planetscope nanosatellites image classification using machine learning. Comput Syst Sci Eng, 2022, 42: 1031–1046.

[27] Campbell M J, Dennison P E, Tune J W, Kannenberg S A, Kerr K L, Codding B F, Anderegg W R L. A multi-sensor, multi-scale approach to mapping tree mortality in woodland ecosystems. Remote Sens Environ, 2020, 245: 111853.

[28] 吴川虎, 陶于祥, 罗小波. 基于Google Earth Engine的重庆市植被指数长时间序列S-G滤波方法的改进与实现. 遥感技术与应用, 2021, 36: 1189–1198.
Wu C H, Tao Y X, Luo X B. Reconstruction of Chongqing’s long time-series NDVI through an improved S-G filter based on google earth engine. Remote Sens Technol Appl, 2021, 36: 1189–1198 (in Chinese with English abstract).

[29] 彭梓励, 马丽娟, 郭曾辉, 李军, 王瑞. 星机协同的冬小麦长势遥感监测研究: 以陕西省咸阳市为例. 麦类作物学报, 2023, 43: 1616–1628.
Peng Z L, Ma L J, Guo Z H, Li J, Wang R. Remote sensing monitoring of winter wheat growth based on satellite and aircraft cooperation: a case study of Xianyang city, Shaanxi province. J Triticeae Crops, 2023, 43: 1616–1628 (in Chinese with English abstract).

[30] 汪恩良, 胡胜博, 韩红卫, 刘承前. 基于无人机低空遥感和OTSU算法的黑龙江开江流凌密度研究. 水利学报, 2022, 53(1): 68–77.
Wang E L, Hu S B, Han H W, Liu C Q. Research on ice concentration in Heilong River based on the UAV low-altitude remote sensing and OTSU algorithm. J Hydraul Eng, 2022, 53(1): 68–77 (in Chinese with English abstract).

[31] 黄燕君, 高小红, 张昊. Landsat遥感影像结合平、丰、枯水期青海湖近35年面积变化研究. 激光与光电子学进展, 网络首发[2025-04-09], http://kns.cnki.net/kcms/detail/31.1690.TN.20250409.1032.084.html.
Huang Y J, Gao X H, Zhang H. The study of Qinghai Lake area changes over the past 35 years using landsat remote sensing images in normal, wet, and dry water periods. Laser Optoelectron Prog, Published online [2025-04-09], http://kns.cnki.net/kcms/detail/31.1690.TN.20250409.1032.084.html (in Chinese with English abstract).

[32] 周涛, 胡振琪, 韩佳政, 张浩. 基于无人机可见光影像的绿色植被提取. 中国环境科学, 2021, 41: 2380–2390.
Zhou T, Hu Z Q, Han J Z, Zhang H. Green vegetation extraction based on visible light image of UAV. China Environ Sci, 2021, 41: 2380–2390 (in Chinese with English abstract).

[33] 苗翠翠, 江南, 彭世揆, 吕恒, 李扬, 张瑜, 王妮, 李军. 基于NDVI时序数据的水稻种植面积遥感监测分析: 以江苏省为例. 地球信息科学学报, 2011, 13: 273–280.
Miao C C, Jiang N, Peng S K, Lyu H, Li Y, Zhang Y, Wang N, Li J. Extraction of paddy land area based on NDVI time-series data: taking Jiangsu province as an example. J Geo Inf Sci, 2011, 13: 273–280 (in Chinese with English abstract).

[34] 周修理, 张萍萍, 秦娜, 霍东旭, 乔金友. 基于GA-RF模型土壤坚实度对黑土区大豆产量的影响. 东北农业大学学报, 2022, 53(10): 67–75.
Zhou X L, Zhang P P, Qin N, Huo D X, Qiao J Y. Effects of soil penetration resistance on soybean yield in black soil region based on GA–RF model. J Northeast Agric Univ, 2022, 53(10): 67–75 (in Chinese with English abstract).

[35] 王利民, 刘佳, 姚保民, 杨玲波杨福刚. 综合NDVI时序特征的冬小麦混合像元分解及面积估算. 中国农学通报, 2019, 35(27): 2333.
Wang L M, Liu J, Yao B M, Yang L B, Yang F G. Winter wheat mixed pixel decomposition and area estimation based on comprehensive NDVI time series characteristics. Agri Chin Bull, 2019, 35(27): 23–33 (in Chinese with English abstract).

[36] 薛雨, 姚金明, 卢庆辉, 杨忍. 基于NDVI和深度学习的多源影像冬小麦提取研究. 现代信息科技, 2023, 7(2): 120122.
Xue Y, Yao J M, Lu Q H, Yang R. Study on winter wheat extraction based on NDVI and deep learning from multi-source imagery. Modern Information Tech2023, 7(2): 120–122 (in Chinese with English abstract).

[37] 宫诏健, 田景仁, 陈杰, 朱明宇, 宋文锦, 朱红, 黄荟羽, 张运芝, 王莹, 贺鑫. 基于MODIS NDVI数据的辽宁省玉米种植面积提取研究. 江西农业学报, 2020, 32(9): 119–126.
Gong Z J, Tian J R, Chen J, Zhu M Y, Song W J, Zhu H, Huang H Y, Zhang Y Z, Wang Y, He X. Research on extraction of spring maize planting area in Liaoning province based on MODIS NDVI data. Acta Agric Jiangxi, 2020, 32(9): 119–126 (in Chinese with English abstract).

[38] 宋晓倩, 张春梅, 张学艺, 李万春. 遥感与积温数据融合的葡萄种植面积提取最佳时相选择. 山东农业科学, 2020, 52(2): 151155.
Song X Q, Zhang C M, Zhang X Y, Li W C. Optimal phenological timing selection for grape planting area extraction based on the fusion of remote sensing and temperature sum data. Shandong Agri Sci, 2020, 52(2): 151–155 (in Chinese with English abstract).

[39] 刘惠楠, 王井利, 周斌, 马运涛. 基于MODIS时序数据物候特征下的多源遥感玉米提取. 江西农业学报, 2023, 35(4): 113121.
Liu H N, Wang J L, Zhou B, Ma Y T. Multi-source remote sensing extraction of corn based on phenological features from MODIS time series data. Acta Agric Jiangxi, 2023, 35(4): 113–121 (in Chinese with English abstract).

[40] 岳衡, 崔华朔, 刘善军. 顾及空间尺度与时序特征的耕地分类方法研究. 测绘科学, 2024, 49(9): 134143.
Yue H, Cui H S, Liu S J. Research on cultivated land classification method considering spatial scale and temporal characteristics. Sci Survey Mapp2024, 49(9), 134–143 (in Chinese with English abstract).

[41] Ma Y, Chen H Y, Zhao G X, Wang Z R, Wang D Y. Spectral index fusion for salinized soil salinity inversion using sentinel-2A and UAV images in a coastal area. IEEE Access, 2020, 8: 159595159608.

[42] 王雅萍, 徐喜飞, 李家国, 陈兴峰, 张宁, 陈华杰, 赵利民, 刘军. 中低分辨率卫星蓝藻水华监测面积校正研究: GOCI-2为例. 航天返回与遥感, 2024, 45(5): 123133.
Wang Y P, Xu X F, Li J G, Chen X F, Zhang N, Chen H J, Zhao L M, Liu J. Correction of algal bloom monitoring area based on medium-and low-resolution satellite data: a case study of GOCI2. Spacecr Remote Sens, 2024, 45(5): 123133 (in Chinese with English abstract).

[43] 宋承运, 曲雪杉, 胡光成, 苏涛. 基于NDVI-NSSI空间与HSV变换的成熟期农作物遥感识别. 农业机械学报, 2023, 54(8): 193–200.
Song C Y, Qu X S, Hu G C, Su T. Crop identification in mature stage with remote sensing based on NDVI-NSSI space and HSV transformation. Trans CSAM, 2023, 54(8): 193–200 (in Chinese with English abstract).

[44] 帅爽, 张志, 张天, 张焜, 肖成志, 陈安. 特征优化结合随机森林算法的干旱区植被高光谱遥感分类方法. 农业工程学报, 2023, 39(9): 287–293.
Shuai S, Zhang Z, Zhang T, Zhang K, Xiao C Z, Chen A. Hyperspectral image classification method for dryland vegetation by combining feature optimization and random forest algorithm. Trans CSAE, 2023, 39(9): 287–293 (in Chinese with English abstract).

[45] 高浩, 符瑜. 基于GF-1时间序列影像的引黄灌区农作物种植结构监测. 气象科技进展, 2022, 12(5): 144150.
Gao H, Fu Y. Monitoring of crop planting structure in the Yellow River diversion irrigation area based on GF-1 time series imagery. Adv Meteorol Sci Tech, 2022, 12(5): 144150 (in Chinese with English abstract).

[46] 徐超, 吕婧妤, 刘昱君, 降亚楠. 基于GEE的宝鸡峡灌区耕地灌溉面积遥感监测方法. 排灌机械工程学报, 2022, 40: 1167–1172.
Xu C, Lyu J Y, Liu Y J, Jiang Y N. Remote sensing monitoring method of cultivated land irrigation area in Baojixia irrigation district based on GEE. J Drain Irrig Mach Eng, 2022, 40: 1167–1172 (in Chinese with English abstract).

[47] 张新长, 齐霁, 陶超, 傅思扬, 郭明宁, 阮永检. 光学遥感影像去云研究进展, 挑战与趋势. 测绘学报, 2025, 54: 603–620.
Zhang X C, Qi J, Tao C, Fu S Y, Guo M N, Ruan Y J. A survey on cloud removal in optical remote sensing images: progress, challenges, and future works. Acta Geod Cartogr Sin, 2025, 54: 603–620 (in Chinese with English abstract).

[48] 成曦, 陈蜜, 钟若飞, 葛鹏飞, 王楚, 范凯伦, 王双, 傅星媛. 融合多重注意力生成对抗网络的遥感图像去云算法. 测绘科学, 2025, 50(3): 33–41.
Cheng X, Chen M, Zhong R F, Ge P F, Wang C, Fan K L, Wang S, Fu X Y. Remote sensing image cloud removal algorithm integrating multiple attention generative adversarial networks. Sci Surv Mapp, 2025, 50(3): 33–41 (in Chinese with English abstract).

[1] HAO Qi, CHEN Tian-Lu, WANG Fu-Gui, WANG Zhen, BAI Lan-Fang, WANG Yong-Qiang, WANG Zhi-Gang. Estimation of canopy nitrogen concentration in maize based on UAV multi- spectral data and spatial nitrogen heterogeneity [J]. Acta Agronomica Sinica, 2025, 51(1): 189-206.
[2] ZHANG Shao-Hua, DUAN Jian-Zhao, HE Li, JING Yu-Hang, Urs Christoph Schulthess, Azam Lashkari, GUO Tian-Cai, WANG Yong-Hua, FENG Wei. Wheat yield estimation from UAV platform based on multi-modal remote sensing data fusion [J]. Acta Agronomica Sinica, 2022, 48(7): 1746-1760.
[3] GAO Lin,YANG Gui-Jun,LI Chang-Chun,FENG Hai-Kuan,XU Bo,WANG Lei,DONG Jin-Hui,FU Kui. Application of an Improved Method in Retrieving Leaf Area Index Combined Spectral Index with PLSR in Hyperspectral Data Generated by Unmanned Aerial Vehicle Snapshot Camera [J]. Acta Agron Sin, 2017, 43(04): 549-557.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!