Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2008, Vol. 34 ›› Issue (07): 1188-1192.

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Relationships among Genome A, B, and C Revealed by FISH and CAPS

KONG Fang,JIANG Jin-Jin,WU Lei,WANG You-Ping*   

  1. College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, Jiangsu, China
  • Received:2007-11-23 Revised:1900-01-01 Online:2008-07-12 Published:2008-07-12
  • Contact: WANG You-Ping

Abstract: Physical localization of repetitive DNA sequence from genome A (151 bp) was carried out on the chromosomes of the selected Brassica species by FISH (fluorescence in situ hybridization). The signals distributed on all the chromosomes of A (Brassica rapa, 2n=20) or C genome (B. oleracea, 2n=18). For B. juncea (AABB, 2n=36), the signals were found on all the chromosomes of genome A and the strength of signal varied among different chromosomes, while the chromosomes of genome B showed weak or no signals. FAE1 gene is a rate-limiting gene for erucic acid synthesis in Brassica. The genes from six Brassica species of U-triangule were cloned by PCR. These PCR products were digested with different restriction endonucleases. Mbo I and Msp I were found to produce informative CAPS patterns of FAE1 gene. Three diploids displayed different patterns, the patterns of genome A was very similar to that of genome C, while the patterns of genome B was the most diverged out of the patterns of the A and C genomes. Three amphidiploids generally exhibited additive patterns of the progenitors, but not strictly in all cases, indicating that rearrangements and recombinations did occur in the formation and evolution of amphidiploids. Genetic relation-ships among Brassica species could be demonstrated through CAPS analysis of FAE1 gene and FISH method when repetitive DNA sequence (not ribosomal RNA genes) was used as a probe.

Key words: Brassica, Fluorescence in situ hybridization (FISH), Repetitive DNA sequence, Cleaved amplified polymorphic sequences (CAPS), Relationship

CLC Number: 

  • 10.3724/SP.J.1006.2008.01188
[1] XIAO Ying-Ni, YU Yong-Tao, XIE Li-Hua, QI Xi-Tao, LI Chun-Yan, WEN Tian-Xiang, LI Gao-Ke, HU Jian-Guang. Genetic diversity analysis of Chinese fresh corn hybrids using SNP Chips [J]. Acta Agronomica Sinica, 2022, 48(6): 1301-1311.
[2] ZHANG Yu-Kun, LU Ying, CUI Kan, XIA Shi-Tou, LIU Zhong-Song. Allelic variation and geographical distribution of TT8 for seed color in Brassica juncea Czern. et Coss. [J]. Acta Agronomica Sinica, 2022, 48(6): 1325-1332.
[3] CHEN Song-Yu, DING Yi-Juan, SUN Jun-Ming, HUANG Deng-Wen, YANG Nan, DAI Yu-Han, WAN Hua-Fang, QIAN Wei. Genome-wide identification of BnCNGC and the gene expression analysis in Brassica napus challenged with Sclerotinia sclerotiorum and PEG-simulated drought [J]. Acta Agronomica Sinica, 2022, 48(6): 1357-1371.
[4] ZHANG Yi-Zhong, ZENG Wen-Yi, DENG Lin-Qiong, ZHANG He-Cui, LIU Qian-Ying, ZUO Tong-Hong, XIE Qin-Qin, HU Deng-Ke, YUAN Chong-Mo, LIAN Xiao-Ping, ZHU Li-Quan. Codon usage bias analysis of S-locus genes SRK, SLG, and SP11/SCR in Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(5): 1152-1168.
[5] HUANG Wei, GAO Guo-Ying, WU Jin-Feng, LIU Li-Li, ZHANG Da-Wei, ZHOU Ding-Gang, CHENG Hong-Tao, ZHANG Kai-Xuan, ZHOU Mei-Liang, LI Mei, YAN Ming-Li. Regulation of flavonoid synthesis by BjA09.TT8 and BjB08.TT8 genes in Brassica juncea [J]. Acta Agronomica Sinica, 2022, 48(5): 1169-1180.
[6] YUAN Da-Shuang, DENG Wan-Yu, WANG Zhen, PENG Qian, ZHANG Xiao-Li, YAO Meng-Nan, MIAO Wen-Jie, ZHU Dong-Ming, LI Jia-Na, LIANG Ying. Cloning and functional analysis of BnMAPK2 gene in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(4): 840-850.
[7] HUANG Cheng, LIANG Xiao-Mei, DAI Cheng, WEN Jing, YI Bin, TU Jin-Xing, SHEN Jin-Xiong, FU Ting-Dong, MA Chao-Zhi. Genome wide analysis of BnAPs gene family in Brassica napus [J]. Acta Agronomica Sinica, 2022, 48(3): 597-607.
[8] WANG Rui, CHEN Xue, GUO Qing-Qing, ZHOU Rong, CHEN Lei, LI Jia-Na. Development of linkage InDel markers of the white petal gene based on whole-genome re-sequencing data in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(3): 759-769.
[9] ZHANG Guo-Wei, LI Kai, LI Si-Jia, WANG Xiao-Jing, YANG Chang-Qin, LIU Rui-Xian. Effects of sink-limiting treatments on leaf carbon metabolism in soybean [J]. Acta Agronomica Sinica, 2022, 48(2): 529-537.
[10] ZHAO Gai-Hui, LI Shu-Yu, ZHAN Jie-Peng, LI Yan-Bin, SHI Jia-Qin, WANG Xin-Fa, WANG Han-Zhong. Mapping and candidate gene analysis of silique number mutant in Brassica napus L. [J]. Acta Agronomica Sinica, 2022, 48(1): 27-39.
[11] XIE Qin-Qin, ZUO Tong-Hong, HU Deng-Ke, LIU Qian-Ying, ZHANG Yi-Zhong, ZHANG He-Cui, ZENG Wen-Yi, YUAN Chong-Mo, ZHU Li-Quan. Molecular cloning and expression analysis of BoPUB9 in self-incompatibility Brassica oleracea [J]. Acta Agronomica Sinica, 2022, 48(1): 108-120.
[12] WANG Yan-Hua, LIU Jing-Sen, LI Jia-Na. Integrating GWAS and WGCNA to screen and identify candidate genes for biological yield in Brassica napus L. [J]. Acta Agronomica Sinica, 2021, 47(8): 1491-1510.
[13] ZUO Xiang-Jun, FANG Peng-Peng, LI Jia-Na, QIAN Wei, MEI Jia-Qin. Characterization of aphid-resistance of a hairy wild Brassica oleracea taxa, B. incana [J]. Acta Agronomica Sinica, 2021, 47(6): 1109-1113.
[14] LI Jie-Hua, DUAN Qun, SHI Ming-Tao, WU Lu-Mei, LIU Han, LIN Yong-Jun, WU Gao-Bing, FAN Chu-Chuan, ZHOU Yong-Ming. Development and identification of transgenic rapeseed with a novel gene for glyphosate resistance [J]. Acta Agronomica Sinica, 2021, 47(5): 789-798.
[15] TANG Xin, LI Yuan-Yuan, LU Jun-Xing, ZHANG Tao. Morphological characteristics and cytological study of anther abortion of temperature-sensitive nuclear male sterile line 160S in Brassica napus [J]. Acta Agronomica Sinica, 2021, 47(5): 983-990.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!