Acta Agron Sin ›› 2009, Vol. 35 ›› Issue (3): 381-387.doi: 10.3724/SP.J.1006.2009.00381
• REPORT • Next Articles
WANG Xiang;CHEN Xiao-Bo**;LI Ai-Li;MAO Long*
[1]Bleecker A B, Patterson S E. Last exit: Senescence,abscission, and meristem arrest in Arabidopsis. Plant Cell, 1997, 9: 1169-1179 [2]Uheda E, Nakamura S. Abscission of Azolla branches induced by ethylene and sodium azide. Plant Cell Physiol, 2000, 41: 1365-1372 [3]Wagstaff C, Chanasut U, Harren F J, Laarhoven L J, Thomas B, Rogers H J, Stead A D. Ethylene and flower longevity in Alstroemeria: Relationship between tepal senescence, abscission and ethylene biosynthesis. J Exp Bot, 2005, 56: 1007-1016 [4]Patterson S E, Bleecker A B. Ethylene-dependent and -independent processes associated with floral organ abscission in Arabidopsis. Plant Physiol, 2004, 134: 194-203 [5]Roberts J A, Elliott K A, Gonzalez-Carranza Z H. Abscission, dehiscence, and other cell separation processes. Annu Rev Plant Biol, 2002, 53: 131-158 [6]Sagee O, Goren R, Riov J. Abscission of citrus leaf explants: Interrelationships of abscisic acid, ethylene, and hydrolytic enzymes. Plant Physiol, 1980, 66: 750-753 [7]McKim S M, Stenvik G E, Butenko M A, Kristiansen W, Cho S K, Hepworth S R, Aalen R B, Haughn G W. The blade-on-petiole genes are essential for abscission zone formation in Arabidopsis. Development, 2008, 135: 1537-1546 [8]Wang X Q, Xu W H, Ma L G, Fu Z M, Deng X W, Li J Y, Wang Y H. Requirement of KNAT1/BP for the development of abscission zones in Arabidopsis thaliana. J Integr Plant Biol, 2006, 48: 15-26 [9]Butenko M A, Patterson S E, Grini P E, Stenvik G E, Amundsen S S, Mandal A, Aalen R B. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell, 2003, 15: 2296-2307 [10]Stenvik G E, Butenko M A, Urbanowicz B R, Rose J K, Aalen R B. Overexpression of Inflorescence deficient in abscission activates cell separation in vestigial abscission zones in Arabidopsis. Plant Cell, 2006, 18: 1467-1476 [11]Stenvik G E, Tandstad N M, Guo Y, Shi C L, Kristiansen W, Holmgren A, Clark S E, Aalen R B, Butenko M A. The EPIP peptide of inflorescence deficient in abscission is sufficient to induce abscission in Arabidopsis through the receptor-like kinases HAESA and HAESA-LIKE2. Plant Cell, 2008, 20: 1805-1817 [12]Jinn T L, Stone J M, Walker J C. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev, 2000, 14: 108-117 [13]Cho S K, Larue C T, Chevalier D, Wang H, Jinn T L, Zhang S, Walker J C. Regulation of floral organ abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA, 2008, 105: 15629-15634 [14]Fernandez D E, Heck G R, Perry S E, Patterson S E, Bleecker A B, Fang S C. The embryo MADS domain factor AGL15 acts postembryonically: Inhibition of perianth senescence and abscission via constitutive expression. Plant Cell, 2000, 12: 183-198 [15]Adamczyk B J, Lehti-Shiu M D, Fernandez D E. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J, 2007, 50: 1007-1019 [16]Cai S, Lashbrook C C. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: Enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis zinc finger protein2. Plant Physiol, 2008, 146: 1305-1321 [17]Kandasamy M K, Deal R B, McKinney E C, Meagher R B. Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. Plant J, 2005, 41: 845-858 [18]Ellis C M, Nagpal P, Young J C, Hagen G, Guilfoyle T J, Reed J W. Auxin response factor1 and auxin response factor2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development, 2005, 132: 4563-4574 [19]Okushima Y, Mitina I, Quach H L, Theologis A. Auxin response factor 2 (ARF2): A pleiotropic developmental regulator. Plant J, 2005, 43: 29-46 [20]Gonzalez-Carranza Z H, Rompa U, Peters J L, Bhatt A M, Wagstaff C, Stead A D, Roberts J A. Hawaiian skirt: An F-box gene that regulates organ fusion and growth in Arabidopsis. Plant Physiol, 2007, 144: 1370-1382 [21]Ferrandiz C, Liljegren S J, Yanofsky M F. Negative regulation of the shatterproof genes by fruitfull during Arabidopsis fruit development. Science, 2000, 289: 436-438 [22]Alonso-Cantabrana H, Ripoll J J, Ochando I, Vera A, Ferrandiz C, Martinez-Laborda A. Common regulatory networks in leaf and fruit patterning revealed by mutations in the Arabidopsis asymmetric leaves1 gene. Development, 2007, 134: 2663-2671 [23]Lewis M W, Leslie M E, Liljegren S J. Plant separation: 50 ways to leave your mother. Curr Opin Plant Biol, 2006, 9: 59-65 [24]Wu H, Mori A, Jiang X, Wang Y, Yang M. The indehiscent protein regulates unequal cell divisions in Arabidopsis fruit. Planta, 2006, 224: 971-979 [25]Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky M F, Kater M M, Colombo L. MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell, 2003, 15: 2603-2611 [26]Li C, Zhou A, Sang T. Rice domestication by reducing shattering. Science, 2006, 311: 1936-1939 [27]Lin Z, Griffith M E, Li X, Zhu Z, Tan L, Fu Y, Zhang W, Wang X, Xie D, Sun C. Origin of seed shattering in rice (Oryza sativa L.). Planta, 2007, 226: 11-20 [28]Konishi S, Izawa T, Lin S Y, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shattering during rice domestication. Science, 2006, 312: 1392-1396 [29]Ji H S, Chu S H, Jiang W, Cho Y I, Hahn J H, Eun M Y, McCouch S R, Koh H J. Characterization and mapping of a shattering mutant in rice that corresponds to a block of domestication genes. Genetics, 2006, 173: 995-1005 [30]Luo J J, Hao W, Jin J, Gao J P, Lin H X. Fine mapping of Spr3, a locus for spreading panicle from African cultivated rice (Oryza glaberrima Steud.). Mol Plant, 2008, 1: 830-868 [31]Mao L, Begum D, Chuang H W, Budiman M A, Szymkowiak E J, Irish E E, Wing R A. Jointless is a MADS-box gene controlling tomato flower abscission zone development. Nature, 2000, 406: 910-913 [32]Szymkowiak E J, Irish E E. Interactions between jointless and wild-type tomato tissues during development of the pedicel abscission zone and the inflorescence meristem. Plant Cell, 1999, 11: 159-175 [33]Brill E M, Watson J M. Ectopic expression of a Eucalyptus grandis SVP orthologue alters the flowering time of Arabidopsis thaliana. Funct Plant Biol, 2004, 31(1445-4408): 217-224 [34]Leseberg C H, Eissler C L, Wang X, Johns M A, Duvall M R, Mao L. Interaction study of MADS-domain proteins in tomato. J Exp Bot, 2008, 59: 2253-2265 [35]Szymkowiak E J, Sussex I M. The internal meristem layer (L3) determines floral meristem size and carpel number in tomato periclinal chimeras. Plant Cell, 1992, 4: 1089-1100 [36]Yang T J, Lee S, Chang S B, Yu Y, de Jong H, Wing R A. In-depth sequence analysis of the tomato chromosome 12 centromeric region: Identification of a large CAA block and characterization of pericentromere retrotranposons. Chromosoma, 2005, 114: 103-117 [37]Schumacher K, Schmitt T, Rossberg M, Schmitz G, Theres K. The Lateral suppressor (LS) gene of tomato encodes a new member of the VHIID protein family. Proc Natl Acad Sci USA, 1999, 96: 290-295 [38]Jiang C Z, Lu F, Imsabai W, Meir S, Reid M S. Silencing polygalacturonase expression inhibits tomato petiole abscission. J Exp Bot, 2008, 59: 973-979 [39]Brummell D A, Hall B D, Bennett A B. Antisense suppression of tomato endo-1,4-beta-glucanase Cel2 mRNA accumulation increases the force required to break fruit abscission zones but does not affect fruit softening. Plant Mol Biol, 1999, 40: 615-622 [40]Gonzalez-Bosch C, del Campillo E, Bennett A B. Immunodetection and characterization of tomato endo-beta-1,4-glucanase Cel1 protein in flower abscission zones. Plant Physiol, 1997, 114: 1541-1546 [41]del Campillo E, Bennett A B. Pedicel breakstrength and cellulase gene expression during tomato flower abscission. Plant Physiol, 1996, 111: 813-820 [42]Guinn G, Brummett D L. Changes in Abscisic Acid and Indoleacetic Acid before and after Anthesis Relative to Changes in Abscission Rates of Cotton Fruiting Forms. Plant Physiol, 1988, 87: 629-631 [43]Guinn G, Brummett D L. Changes in Free and Conjugated Indole 3-Acetic Acid and Abscisic Acid in Young Cotton Fruits and Their Abscission Zones in Relation to Fruit Retention during and after Moisture Stress. Plant Physiol, 1988, 86: 28-31 [44]Guinn G. Abscisic Acid and Cutout in Cotton. Plant Physiol, 1985, 77: 16-20 [45]Chen Q F, Yen C, Yang J L. Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat. Genet Resour Crop Evol, 1998, 45: 407-410 [46]Lu P(陆平). Chromosome karyotype analysis and location of the gene for brittle rachis in the Tibetan wheat. Tibetan J Agric Sci (西藏农业科技), 2000, 22(2): 23-27(in Chinese) [47]Watanabe N, Fujii Y, Kato N, Ban T, Martinek P. Microsatellite mapping of the genes for brittle rachis on homoeologous group 3 chromosomes in tetraploid and hexaploid wheats. J Appl Genet, 2006, 47: 93-98 |
No related articles found! |
|