Acta Agron Sin ›› 2011, Vol. 37 ›› Issue (10): 1801-1808.doi: 10.3724/SP.J.1006.2011.01801
• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles Next Articles
FENG Rui-Yun1,2,BAI Yun-Feng2,**,LI Ping3,ZHANG Wei-Feng2,*,WANG Yuan-Yuan1,YANG Wu-De1,*
[1]Caemmerer S, Furbank R T. The C4 pathway: an efficient CO2 pump. Photosynthesis Res, 2003, 77: 191–207 [2]Schaeffer A R, Sheen J. Maize C4 photosynthesis involves differential regulation of phosphoenolpyruvate carboxylase gene. Plant J, 1992, 2: 221–232 [3]Engelmann S, Blaesing O E, Svensson P, Westhoff P. Molecular evolution of C4 phosphoenolpyruvate carboxylase in the genus Flaveria: a gradual increase from C3 to C4 characteristics. Planta, 2003, 217: 717–725 [4]Blaesing O E, Ernst K, Streubel M, Westhoff P, Svensson P. The non-photosynthetic phosphoenolpyruvate carboxylases of the C4 dicot Flaveria trinervia-implications for the evolution of C4 photosynthesisl. Planta, 2000, 215: 448–456 [5]Izui K, Matsumura H, Furumoto T, Kai Y. Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol, 2004, 55: 69–84 [6]Ogren W L, Photorespiration: pathways, regulation and modification. Annu Rev Plant Physiol, 1984, 35: 415–442 [7]Haesler R E, Hirsch H J, Kreuzaler F, Peter haensel C. Overexpression of C4-cycle enzymes in transgenic C3 plants: a biotechnological approach to improve C3-photosynthesis. J Exp Bot, 2002, 53: 591–607 [8]Zhou B-Y(周宝元), Ding Z-S(丁在松), Zhao M(赵明). Alleviation of drought stress inhibition on photosynthesis by over expression of PEPC gene in rice. Acta Agron Sin (作物学报), 2011, 37(1): 112–118 (in Chinese with English abstract) [9]Zhang F, Chi W, Wang Q, Zhang Q D, Wu N F. Molecular cloning of C4-specific Ppc gene of sorghum and its high level expression in transgenic rice. Chin Sci Bull, 2003, 48: 1835–1840 [10]Yang R-Z(杨荣仲), Tan Y-M(谭裕模), Zhang M-Q(张木清), Chen R-K(陈如凯), Li Y-R(李杨瑞). Primary study of genetic transformation of tobacco with sugarcane C4 phosphoenolpyruvate carboxylase gene. Chin J Trop Crops (热带作物学报), 2004, 25(2): 61–65 (in Chinese with English abstract) [11]Shukla S, Bhargava A,Chatterjee A, Srivastava A, Singh S P. Genotypic variability in vegetable amaranth (Amaranthus tricolor L.) for foliage yield and its contributing traits over successive cuttings and years. Euphytica, 2006, 151: 103–110 [12]Bai Y-F(白云凤), Guo Z-H(郭志华), Bai D-M(白冬梅), Wang X-Q(王小琦), Zhang W-F(张维锋). An improved method for extration and identification of potato RNAs. Acta Hortic Sin (园艺学报), 2007, 34(4): 1059–1062 (in Chinese with English abstract) [13]Engelmann S, Blaesing O E, Westhoff P, Svensson P. Serine 774 and animo acids 296 to 437 comprise the major C4 determinants of the C4 phosphoenolpyruvate carboxylase of Flaveria trinervia. FEBS Lett, 2002, 524: 11–14 [14]Blaesing O E, Westhoff P, Svensson P. Evolution of C4 phosphoenolpyruvate carboxylase in Flaveria, a conserved serine resudue in the carboxyl-terminal part of the enzyme is a major determinant for C4-specific characteristics. J Biol Chem, 2000, 275: 27917–27923 [15]Levisky V G. RECON: a program for prediction of nucleosome formation potential. Nucl Acids Res, 2004, 32: 346–349 [16]Chen X Q, Zhang X D, Liang R Q, Zhang L Q, Yang F P, Cao M Q. Expression of the intact C4 type PEPC gene cloned from maize in transgenic winter wheat. Chin Sci Bull, 2004, 49: 2137–2143 [17]Xiang X-C(向珣朝), He L-B(何立斌), Sun J-M(孙建明), Li J-H(李季航), Yao Y-P(姚嫣萍), Li P(李平). Effect of maize PEPC gene in different genetic backgrounds of CMS maintainers and tolerance to photooxidation in the PEPC transgenic line. Chin J Rice Sci (中国水稻科学), 2009, 23(3): 257–262 (in Chinese with English abstract) [18]Ku M S B, Agarie S, Nomura M, Fukayama H, Tsuchida H, Ono K, Hirose S, Toki S, Miyao M, Matsuka M. High-level expression of maize phosphoenolpyruvate carboxylase in transgenic rice plants. Nat Biotechnol, 1999, 17: 76–81 [19]Hudaspeth R L, Grula J W, Dai Z Y, Edwards G E, Ku M S B. Expression on maize phosphoenolpyruvate carboxylase in transgenic tobacco. Plant Physiol, 1982, 98: 458–464 [20]Kawabe A, Miyashita N T. Patterns of codon usage bias in three dicot and four monocot plant species. Genes Genet Systems, 2003, 78: 343–352 [21]Li Ping(李平), Bai Y-F(白云凤), Feng R-Y(冯瑞云), Wang Y-Y(王原媛), Zhang W-F(张维锋). Analhysis of codon bias of NAD-ME gene in Amaranthus hypochondriacus. Chin J Appl Environ Biol (应用和环境生物学报), 2011, 17(1): 12–17 (in Chinese with English abstract) [22]Furger A, O’Sullivan J M, Binnie A, Lee B A, Proudfoot N J. Promoter proximal splice sites enhance transcription. Gene Dev, 2002, 16: 2792–2799 [23]Jia Q, Wu H T, Zhou X J, Gao J, Zhao W, Ar Q S, Wei J S, Hou L H, Wu S Y, Zhang Y. A “GC-rich” method for mammalian gene expression: a dominant role of non-coding DNA GC content in regulation of mammalian gene expression. Sci China: Life Sci, 2010, 53: 94–100 [24]Wang Y B, Lang Z H, Zhang J, He K L, Song F P, Huang D F. Ubi1 intron-mediated enhancement of the Bt cry1AH gene in transgenic maize (Zea mays L.). Chin Sci Bull, 2008, 53(20): 3185–3190 [25]Jeong Y M, Mun J H, Kim H. An upstream region in the first intron of petunia action depolymerizing factor 1 affects tissue- specific expression in transgenic Arabidopsis. Plant J, 2007, 50: |
No related articles found! |
|