Welcome to Acta Agronomica Sinica,

Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (7): 1099-1110.doi: 10.3724/SP.J.1006.2019.81065

• TILLAGE & CULTIVATION·PHYSIOLOGY & BIOCHEMISTRY • Previous Articles     Next Articles

Generation and application of high temporal and spatial resolution images of regional farmland based on ESTARFM model

CHEN Meng-Lu1,2,LI Cun-Jun1,*(),GUAN Yun-Lan2,ZHOU Jing-Ping1,WANG Dao-Yun2,LUO Zheng-Qian3   

  1. 1 Beijing Research Center for Information Technology in Agriculture, Beijing 100097, China
    2 East China University of Technology, Nanchang 330013, Jiangxi, China
    3 Xinjiang Academy of Agricultural Sciences Comprehensive Test Site, Urumqi 830091, Inner Mongolia, China
  • Received:2018-09-17 Accepted:2019-01-19 Online:2019-07-12 Published:2019-02-27
  • Contact: Cun-Jun LI E-mail:licj@nercita.org.cn
  • Supported by:
    This study was supported by the National Natural Science Foundation of China(41671435)

Abstract:

Multi-temporal remote sensing images are important data sources for agricultural phenology, growth, and yield monitoring. However, visible light images are vulnerable to cloud and rain, and there is a lack of high temporal and spatial resolution data in reality, the remote sensing image fusion methods have become particularly important. ESTARFM (Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model) is used to synthesize high spatial-temporal resolution images in small areas. The adaptability and application of the algorithm in different agricultural growing areas in China have not yet fully developed. In this paper, the large area application test analysis was performed in the Hebei, Heilongjiang, and Xinjiang. Based on MODIS and Landsat images, we used ESTARFM to generate Landsat images with high spatial-temporal characteristics, which were compared with the real Landsat images. The application of ESTARFM algorithm in NDVI was performed for crop growth monitoring in Xinjiang. In conclusion ESTARFM can perform better image prediction in three different regional conditions, generate 30 m multi-temporal NDVI with good spatial resolution in Xinjiang, and monitor the growth of crops.

Key words: high spatiotemporal resolution, ESTARFM, fusion data, NDVI, growth monitoring

Fig. 1

Location of study area"

Table 1

Landsat-8 OLI image date"

研究区域
Research area
中心经纬度
Center latitude and longitude
日期(年积日)
Date (DOY)
河北研究区 Hebei research area 38°42′5″N,115°9′13″E 2017-03-27(86), 2017-04-12(102), 2017-05-14(134)
黑龙江研究区 Heilongjiang research area 46°13′16″N,126°43′27″E 2017-07-07(188), 2017-09-09(252), 2017-09-25(268)
新疆研究区 Xinjiang research area 38°29′55″N,77°21′14″E 2017-06-07(158), 2017-06-23(174), 2017-08-10(222)

Table 2

Band settings of MODIS and Landsat-8 images"

Landsat-8 OLI波段
Landsat-8 OLI band
波长范围
Wavelength range
(nm)
空间分辨率
Spatial resolution
(m)
MCD43A4波段
MCD43A4 band
波长范围
Wavelength range
(nm)
空间分辨率
Spatial resolution
(m)
2 450-515 30 3 459-479 500
3 525-600 30 4 545-565 500
4 630-680 30 1 620-670 250
5 845-885 30 2 841-876 250
6 1560-1660 30 6 1628-1652 500
7 2100-2300 30 7 2105-2155 500

Fig. 2

Structure of technical flow"

Fig. 3

Comparison of original Landsat-8 OLI image with ESTARFM A, D, and G: true Landsat images in Hebei, Heilongjiang and Xinjiang area; C, F, and I: predicted images from Hebei, Heilongjiang and Xinjiang area via ESTARFM; B, E, and H: comparison of real image and predicted image detail."

Fig. 4

Comparison of reflectance values between real Landsat images (abscissa) and ESTARFM fusion images (ordinate) A1-A6: correlation between the true Landsat image of Hebei and the predicted bands; B1-B6: correlation between real Landsat images of Heilongjiang and predicted bands; C1-C6: correlation between true Landsat images in Xinjiang and predicted bands."

Fig. 5

Comparison of NDVI results between real and fusion images A: Hebei agricultural area (2017-04-12); B: Heilongjiang agricultural area (2017-09-09); C: Xinjiang agricultural area (2017-06-23)."

Table 3

Correlation analysis of original Landsat-8 OLI image and ESTARFM fusion"

区域与影像获取日期
Region and acquisition date
波段
Band
决定系数
R2
均方根误差
RMSE
方差
Variance
平均绝对偏差
MAD
河北Hebei Blue 0.8684 0.0451 0.0020 0.0355
2017-04-12 Green 0.8810 0.0566 0.0032 0.0447
Red 0.9446 0.0767 0.0059 0.0614
NIR 0.8551 0.1010 0.0102 0.0741
SWIR1 0.9309 0.1029 0.0106 0.0807
SWIR2 0.9081 0.1106 0.0122 0.0901
黑龙江Heilongjiang Blue 0.8913 0.0171 0.0003 0.0171
2017-09-09 Green 0.8906 0.0190 0.0004 0.0190
Red 0.9017 0.0252 0.0006 0.0252
NIR 0.7013 0.0278 0.0008 0.0278
SWIR1 0.7775 0.0332 0.0011 0.0332
SWIR2 0.7236 0.0443 0.0019 0.0443
新疆Xinjiang Blue 0.7842 0.0407 0.0017 0.0349
2017-06-23 Green 0.8084 0.0496 0.0024 0.0420
Red 0.8613 0.0679 0.0046 0.0594
NIR 0.8682 0.0932 0.0087 0.0765
SWIR1 0.8817 0.0836 0.0069 0.0589
SWIR2 0.9123 0.0973 0.0095 0.0839

Fig. 6

Acquisition date of Landsat-8 OLI and MODIS data (DOY)"

Fig. 7

High spatial and temporal resolution of 8-day intervals in Akesu, Xinjiang"

Fig. 8

Variations of NDVI over time in images after fusion A: vegetation; B: desert; C: building; D: water."

Fig. 9

Classification map of crop remote sensing"

Fig. 10

Crop grading and growth monitoring map A: crop growth monitoring map; B: cotton growth grade map; C: rice growth grade map."

[1] Ju J, Roy D P . The availability of cloud-free Landsat ETM+ data over the conterminous United States and globally. Remot Sens Environ, 2008,112:1196-1211.
doi: 10.1016/j.rse.2007.08.011
[2] Pohl C, Genderen J L V . Review article multisensor image fusion in remote sensing: Concepts, Methods and Applications. Int J Remot Sens, 1998,19:823-854.
doi: 10.1080/014311698215748
[3] Jarihani A A, McVicar T R, Van Niel T G, Emelyanova I V, Callow J N, Johansen K . Blending Landsat and MODIS data to generate multispectral indices: a comparison of “Index-then- Blend” and “Blend-then-Index” approaches. Remot Sens, 2014,6:9213-9238.
doi: 10.3390/rs6109213
[4] 石月婵 . 基于多源遥感数据的高时空地表温度生成方法研究. 山东科技大学硕士学位论文, 山东青岛, 2013.
Shi Y C . Research on the Generation of High Temporal and Spatial land Surface Temperature Based on Multi-source Remote Sensing Data. MS Thesis of Shandong University of Science and Technology, Qingdao, Shandong, China, 2013 (in Chinese with English abstract).
[5] Gao F, Masek J, Schwaller M, Hall F . On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance. IEEE Transact Geosci Remot Sens, 2006,44:2207-2218.
doi: 10.1109/TGRS.2006.872081
[6] Knauer K, Gessner U, Fensholt R, Kuenzer C . An ESTARFM fusion framework for the generation of large-scaletime series in cloud-prone and heterogeneous landscapes. Remot Sens, 2016,8:425.
doi: 10.3390/rs8050425
[7] Hilker T, Wulder M A, Coops N C, Linke J, Mcdermid G, Masek J G, Gao F, White J C . A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remot Sens Environ, 2009,113:1613-1627.
doi: 10.1016/j.rse.2009.03.007
[8] Zhu X L, Chen J, Gao F, Chen X H, Masek J G . An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remot Sens Environ, 2010,114:2610-2623.
doi: 10.1016/j.rse.2010.05.032
[9] Emelyanova I V, Mcvicar T R, Van Niel T G, Li L T, van Dijk A I J M . Assessing the accuracy of blending Landsat-MODIS surface reflectances in two landscapes with contrasting spatial and temporal dynamics: A framework for algorithm selection. Remot Sens Environ, 2013,133:193-209.
doi: 10.1016/j.rse.2013.02.007
[10] Chen B, Huang B, Xu B . Comparison of spatiotemporal fusion models: a review. Remot Sens, 2015,7:1798-1835.
doi: 10.3390/rs70201798
[11] Liao C H, Wang J F, Pritchard I, Liu J G, Shang J L . A spatio-temporal data fusion model for generating NDVI time series in heterogeneous regions. Remot Sens, 2017,9:1125.
doi: 10.3390/rs9111125
[12] Knauer K, Gessner U, Fensholt R, Forkuor G, Kuenzer C . Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: the role of population growth and implications for the environment. Remot Sens, 2017,9:132.
doi: 10.3390/rs9020132
[13] Wu M Q, Niu Z, Wang C Y, Wu C Y, Wang L . Use of MODIS and Landsat time series data to generate high-resolution temporal synthetic Landsat data using a spatial and temporal reflectance fusion model. J Appl Remot Sens, 2012,6:063507.
doi: 10.1117/1.JRS.6.063507
[14] 石月婵, 杨贵军, 李鑫川, 宋健, 王纪华, 王锦地 . 融合多源遥感数据生成高时空分辨率数据的方法对比. 红外与毫米波学报, 2015,34:92-99.
Shi Y C, Yang G J, Li X C, Song J, Wang J H, Wang J D . Comparison of methods for generating high temporal and spatial resolution data by using multi-source remote sensing data. J Infrared Millimeter Wave, 2015,34:92-99 (in Chinese with English abstract).
[15] Wu M Q, Wu C Y, Huang W J, Niu Z, Wang C Y, Li W, Hao P Y . An improved high spatial and temporal data fusion approach for combining Landsat and MODIS data to generate daily synthetic Landsat imagery. Inform Fusion, 2016,31:14-25.
doi: 10.1016/j.inffus.2015.12.005
[16] 周巍, 朱荣, 张锦水 . 遥感辅助的农作物种植面积小域估计方法研究. 统计研究, 2015,32(7):81-86.
Zhou W, Zhu R, Zhang J S . A study on small area estimation for crop acreage in remote sensing assisted crop survey. Stat Res, 2015,32(7):81-86 (in Chinese with English abstract).
[17] 侯博展, 陈蜀江, 侯建楠, 黄铁成, 贾翔 . 基于多源多时相数据集的喀什市近70a城区空间扩展遥感研究. 冰川冻土, 2016,38:836-844.
Hou B Z, Chen S J, Hou J N, Huang T C, Jia X . Remote sensing study of urban spatial expansion in Kashgar City based on multisource and multi-temporal datasets in the last 70 years. J Glaciology Geocryo, 2016,38:836-844 (in Chinese with English abstract).
[18] 李国砚, 张仲元, 郑艳芬, 刘晓玫 . MODIS影像的大气校正及在太湖蓝藻监测中的应用. 湖泊科学, 2008,20:160-166.
Li G Y, Zhang Z Y, Zheng Y F, Liu X M . Atmospheric correction of MODIS images and its application in cyanobacteria bloom monitoring in Lake Taihu. J Lake Sci, 2008,20:160-166 (in Chinese with English abstract).
[19] Bai L L, Cai J B, Liu Y, Chen H, Zhang B Z, Huang L X . Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin. Agric Water Manage, 2017,188:1-11.
doi: 10.1016/j.agwat.2017.03.028
[20] Huang C, Chen Y, Zhang S Q, Li L Y, Shi K F, Liu R . Surface water mapping from Suomi NPP-VIIRS imagery at 30 m resolution via blending with Landsat data. Remot Sens, 2016,8:631.
doi: 10.3390/rs8080631
[21] 郭文静, 李爱农, 赵志强, 王继燕 . 基于AVHRR和TM的时间序列较高分辨率NDVI数据集重构方法. 遥感技术与应用, 2015,30:267-276.
Guo W J, Li A N, Zhao Z Q, Wang J Y . Constructing the time-series NDVI dataset with a high spatial and temporal resolution through fusing AVHRR with TM data. Remot Sens Tech Appl, 2015,30:267-276.
[22] 郝贵斌, 吴波, 张立福, 付东杰, 李瑶 . ESTARFM模型在西藏色林错湖面积时空变化中的应用分析(1976-2014年). 地球信息科学学报, 2016,18:833-846.
Hao G B, Wu B, Zhang L F, Fu D J, Li Y . Temporal and spatial variation analysis of the area of Siling Co lake in Tibet based on ESTARFM (1976-2014). J Geo-inform Sci, 2016,18:833-846. (in Chinese with English abstract).
[23] 杨贵军, 孙晨红, 历华 . 黑河流域ASTER与MODIS融合生成高分辨率地表温度的验证. 农业工程学报, 2015,31(6):193-200.
Yang G J, Sun C H, Li H . Verification of high-resolution surface temperature by fusion of ASTER and MODIS in Heihe River Basin. Trans CSAE, 2015,31(6):193-200 (in Chinese with English abstract).
[24] 吴炳方, 张峰, 刘成林, 张磊, 罗治敏 . 农作物长势综合遥感监测方法. 遥感学报, 2004,8:498-514.
Wu B F, Zhang F, Liu C L, Zhang L, Luo Z M . An integrated method for crop condition monitoring. J Remot Sens, 2004,8:498-514 (in Chinese with English abstract).
[25] Liu M X, Liu X N, Wu L, Zou X Y, Jiang T, Zhao B Y . A modified spatiotemporal fusion algorithm using phenological information for predicting reflectance of paddy rice in southern china. Remot Sens, 2018,10:772.
doi: 10.3390/rs10050772
[26] Zhang W, Li A, Jin H, Bian J H, Zhang Z J, Lei G B, Qin Z H, Huang C Q . An enhanced spatial and temporal data fusion model for fusing Landsat and MODIS surface reflectance to generate high temporal Landsat-like data. Remot Sens, 2013,5:5346-5368.
doi: 10.3390/rs5105346
[27] Gärtner P, Förster M, Kleinschmit B . The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring. Remot Sens Environ, 2016,177:237-247.
doi: 10.1016/j.rse.2016.01.028
[28] Yang G J, Weng Q H, Pu R L, Gao F, Sun C H, Li H, Zhao C J . Evaluation of ASTER-like daily land surface temperature by fusing ASTER and MODIS data during the HiWATER-MUSOEXE. Remot Sens, 2016,8:75.
doi: 10.3390/rs8010075
[29] Fu D J, Chen B Z, Wang J, Zhu X L, Hilker T . An improved image fusion approach based on enhanced spatial and temporal the adaptive reflectance fusion model. Remot Sens, 2013,5:6346-6360.
doi: 10.3390/rs5126346
[1] LI Yan-Da, CAO Zhong-Sheng, SHU Shi-Fu, SUN Bin-Feng, YE Chun, HUANG Jun-Bao, ZHU Yan, TIAN Yong-Chao. Model for monitoring leaf dry weight of double cropping rice based on crop growth monitoring and diagnosis apparatus [J]. Acta Agronomica Sinica, 2021, 47(10): 2028-2035.
[2] YANG Hai-Bo,ZHANG Jia-Kang,YANG Liu,JIA Yu-Ze, ,LI Fei. Effect of variety and growth period on NDVI estimation of nitrogen concentration in potato plants [J]. Acta Agronomica Sinica, 2020, 46(6): 950-959.
[3] Li-Min WANG,Ling-Bo YANG,Jia LIU,Fu-Gang YANG,Bao-Min YAO. Comparison of Growth Monitoring Index NDVI between GF-1 and MODIS Images in Winter Wheat [J]. Acta Agronomica Sinica, 2018, 44(7): 1043-1054.
[4] ZHANG Ning,QI Bo,ZHAO Jin-Ming,ZHANG Xiao-Yan,WANG Su-Ge,ZHAO Tuan-Jie,GAI Jun-Yi. Prediction for Soybean Grain Yield Using Active Sensor GreenSeeker [J]. Acta Agron Sin, 2014, 40(04): 657-666.
[5] WANG Lei, BAI You-Lu, LU Yan-Li, WANG He, YANG Li-Ping. NDVI Analysis and Yield Estimation in Winter Wheat based on GreenSeeker [J]. Acta Agron Sin, 2012, 38(04): 747-753.
[6] LU Yan-Li;LI Shao-Kun;WANG Ji-Hua;XIE Rui-Zhi;HUANG Wen-Jiang;GAO Shi-Ju;Liu Liangyun;Wang Zhijie. Spectral and Recongnized Method for Different Plant Type Wheat Cultivars [J]. Acta Agron Sin, 2005, 31(10): 1333-1339.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!