Acta Agronomica Sinica ›› 2019, Vol. 45 ›› Issue (9): 1295-1302.doi: 10.3724/SP.J.1006.2019.93003
• REVIEW • Next Articles
XU Qian-Yu1,LAN Yu2,LIU Jia-Xin2,ZHOU Xin-Yu3,ZHANG Gang3,ZHENG Zhi-Fu1,*()
[1] | Godfray H C J, Beddington J R, Crute I R, Haddad L, Lawrence D, Muir J F, Pretty J, Robinson S, Thomas S M, Toulmin C . Food security: the challenge of feeding 9 billion people. Science, 2010,327:812-818. |
[2] | Tester M, Langridge P . Breeding technologies to increase crop production in a changing world. Science, 2010,327:818-822. |
[3] | Davis A S, Hill J D, Chase C A, Johanns A M, Liebman M . Increasing cropping system diversity balances productivity, profitability and environmental health. PLoS One, 2012,7:e47149, doi: 10.1371/journal.pone.0047149. |
[4] | Gianessi L P, Reigner N P . The value of herbicides in U.S. crop production. Weed Tech, 2007,21:559-566. |
[5] | Ding X X, Li P W, Zhou H Y, Li J, Bai Y Z . Comparative study on maximum residue limits standards of pesticides in peanuts. Chin J Oil Crop Sci, 2011,33:527-531 (in Chinese with English abstract). |
[6] | Jabusch T W, Tjeerdema R S . Chemistry and fate of triazolopyrimidine sulfonamide herbicides. Rev Environ Contamin Toxicol, 2008,193:31-52. |
[7] | Cui H L, Li X, Wang G, Wang J, Wei S, Cao H . Acetolactate synthase proline (197) mutations confer tribenuron-methyl resistance in Capsella bursa-pastoris populations from China. Pest Biochem Physiol, 2012,102:229-232. |
[8] | Han X J, Dong Y, Sun X N, Li X F, Zheng M Q . Molecular basis of resistance to tribenuron-methyl in Descurainia sophia(L.) populations from China. Pest Biochem Physiol, 2012,104:77-81. |
[9] | Lee H, Ullrich S E, Burke I C, Yenish J, Paulitz T C . Interactions between the root pathogen Rhizoctonia solani AG-8 and acetolactate-synthase-inhibiting herbicides in barley. Pest Manag Sci, 2012,68:845-852. |
[10] | Liu W, Bi Y, Li L, Yuan G, Wang J . Molecular basis of resistance to tribenuron in water starwort (Myosoton aquaticum) populations from China. Weed Sci, 2013,61:390-395. |
[11] | Yu H, Zhang F, Wang G, Liu Y, Liu D . Partial deficiency of isoleucine impairs root development and alters transcript levels of the genes involved in branched-chain amino acid and glucosinolate metabolism in Arabidopsis. J Exp Bot, 2013,64:599-612. |
[12] | Ouellet T, Rutledge R G, Miki B L . Members of the acetohydroxyacid synthase multigene family of Brassica napus has divergent patterns of expression. Plant J, 1992,2:321-330. |
[13] | Breccia G, Vega T, Felitti S A, Picardi L, Nestares G . Differential expression of acetohydroxyacid synthase genes in sunflower plantlets and its response to imazapyr herbicide. Plant Sci, 2013,208:28-33. |
[14] | Ochogavía A C, Breccia G, Vega T, Felitti S A, Picardi L A, Nestares G . Acetohydroxyacid synthase activity and transcripts profiling reveal tissue-specific regulation of ahas genes in sunflower. Plant Sci, 2014,224:144-150. |
[15] | Binder S . Branched-chain amino acid metabolism in Arabidopsis thaliana. Arabidopsis Book, 2010,8:e0137, doi: 10.1199/tab. 0137. |
[16] | Pratelli R, Pilot G . Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot, 2014,65:5535-5556. |
[17] | Shaner D L, Anderson P C, Stidham M A . Imidazolinones: potent inhibitors of acetohydroxyacid synthase. Plant Physiol, 1984,76:545-546. |
[18] | Duggleby R G, McCourt J A, Guddat L W . Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem, 2008,46:309-324. |
[19] | Subramanian M V, Gerwick B C . Inhibition of acetolactate synthase by triazolopyrimidines. A review of recent developments. ACS Symp Ser Am Chem Soc, 1989,398:277-288. |
[20] | Subramanian M V, Hung H Y, Dias J M, Miner V M, Butler J H, Jachetta J J . Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol, 1990,94:239-244. |
[21] | Singh B K, Shaner D L . Biosynthesis of branched chain amino acids: From test tube to field. Plant Cell, 1995,7:935-944. |
[22] | Lee H, Rustgi S, Kumar N, Burke I, Yenish J P, Gill K S, von Wettstein D, Ullrich S E . Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides. Proc Natl Acad Sci USA, 2011,108:8909-8913. |
[23] | Hershey H P, Schwartz L J, Gale J P, Abell L M . Cloning and functional expression of the small subunit of acetolactate synthase from Nicotiana plumbaginifolia. Plant Mol Biol, 1999,40:795-806. |
[24] | Lee Y T, Duggleby R G . Identification of the regulatory subunit of Arabidopsis thaliana acetohydroxyacid synthase and reconstitution with its catalytic subunit. Biochemistry, 2001,40:6836-6844. |
[25] | Chen H, Saksa K, Zhao F, Qiu J, Xiong L . Genetic analysis of pathway regulation for enhancing branched-chain amino acid biosynthesis in plants. Plant J, 2010,63:573-583. |
[26] | Endo M, Shimizu T, Fujimori T, Yanagisawa S, Toki S . Herbicide-resistant mutations in acetolactate synthase can reduce feedback inhibition and lead to accumulation of branched-chain amino acids. Food Nutr Sci, 2013,4:522-528. |
[27] | Holmberg S, Petersen J G . Regulation of isoleucine-valine biosynthesis in Saccharomyces cerevisiae. Curr Genet, 1988,13:207-217. |
[28] | Gao J Q, Pu H M, Qi C K, Zhang J F, Long W H, Hu M L, Chen S, Chen X J, Chen F, Gu H . Identification of imidazolidone-resistant oilseed rape mutant. J Plant Genet Resour, 2010,11:369-373 (in Chinese with English abstract). |
[29] | Rajasekaran K, Grula J W, Anderson D M . Selection and characterization of mutant cotton (Gossypium hirsutum L.) cell lines resistant to sulfonylurea and imidazolinone herbicides. Plant Sci, 1996,199:115-124. |
[30] | Wright T R, Penner D . Cell selection and inheritance of imidazolinone resistance in sugar beet (Beta vulgaris). Theor Appl Genet, 1998,96:612-620. |
[31] | Kolkman J M, Slabaugh M B, Bruniard J M, Berry S, Bushman B S, Olungu C, Maes N, Abratti G, Zambelli A, Miller J F, Leon A, Knapp S J . Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor Appl Genet, 2004,109:1147-1159. |
[32] | Pozniak C J, Birk I T, O’Donoughue L S, Ménard C, Hucl P J, Singh B K . Physiological and molecular characterization of mutation-derived imidazolinone resistance in spring wheat. Crop Sci, 2004,44:1434-1443. |
[33] | Tan S, Evans R R, Dahmer M L, Singh B K, Shaner D L . Imidazolinone-tolerant crops: History, current status and future. Pest Manag Sci, 2005,61:246-257. |
[34] | Sala C A, Bulos M, Echarte M, Whitt S R, Ascenzi R . Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower. Theor Appl Genet, 2008,118:105-112. |
[35] | Sala C A, Bulos M . Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sunflower. Theor Appl Genet, 2012,124:355-364. |
[36] | Powles S B, Yu Q . Evolution in action: plants resistant to herbicides. Annu Rev Plant Biol, 2010,61:317-347. |
[37] | Ghio C, Ramos M L, Altieri E, Bulos M, Sala C A . Molecular characterization of Als1, an acetohydroxyacid synthase mutation conferring resistance to sulfonylurea herbicides in soybean. Theor Appl Genet, 2013,126:2957-2968. |
[38] | Walter K L, Strachan S D, Ferry N M, Albert H H, Castle L A, Sebastian S A . Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean. Pest Manag Sci, 2014,70:1831-1839. |
[39] | Tranel P J, Wright T R . Resistance of weeds to ALS-inhibiting herbicides: What have we learned? Weed Sci, 2002,50:700-712. |
[40] | Bernasconi P, Woodworth A R, Rosen B A, Subramanian M V, Siehl D L . A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J Biol Chem, 1995,270:17381-17385. |
[41] | Jander G, Baerson S R, Hudak J A, Gonzalez K A, Gruys K J, Last R L . Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiol, 2003,131:139-146. |
[42] | Haughn G W, Smith J, Mazur B, Somerville C . Transformation with a mutant Arabidopsis acetolactate synthase allele renders tobacco resistant to sulfonylureas. Mol Gen Genet, 1988,211:266-271. |
[43] | Lee K Y, Townsend J, Tepperman J, Black M, Chui C F, Mazur B, Dunsmuir P, Bedbrook J . The molecular basis of sulfonylurea herbicide resistance in tobacco. EMBO J, 1988,7:1241-1248. |
[44] | Liu W, Yuan G, Du L, Guo W, Li L, Bi Y, Wang J . A novel Pro197Glu substitution in acetolactate synthase (ALS) confers broad-spectrum resistance across ALS inhibitors. Pestic Biochem Physiol, 2015,117:31-38. |
[45] | Ntoanidou S, Kaloumenos N, Diamantidis G, Madesis P, Eleftherohorinos I . Molecular basis of Cyperus difformis cross- resistance to ALS-inhibiting herbicides. Pestic Biochem Physiol, 2016,127:38-45. |
[46] | Deng W, Yang Q, Zhang Y, Jiao H, Mei Y, Li X, Zheng M . Cross-resistance patterns to acetolactate synthase (ALS)-inhibiting herbicides of flixweed (Descurainia sophia L.) conferred by different combinations of ALS isozymes with a Pro-197-Thr mutation or a novel Trp-574-Leu mutation. Pestic Biochem Physiol, 2017,136:41-45. |
[47] | Rey-Caballero J, Menéndez J, Osuna M D, Salas M, Torra J . Target-site and non-target-site resistance mechanisms to ALS inhibiting herbicides in Papaver rhoeas. Pestic Biochem Physiol, 2017,138:57-65. |
[48] | Hattori J, Brown D, Mourad G, Labbé H, Ouellet T, Sunohara G, Rutledge R, King J, Miki B . An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol Gen Genet, 1995,246:419-425. |
[49] | Li J, Li M, Gao X, Fang F . A novel amino acid substitution Trp574Arg in acetolactate synthase (ALS) confers broad resistance to ALS-inhibiting herbicides in crabgrass (Digitaria sanguinalis). Pest Manag Sci, 2017,73:2538-2543. |
[50] | Pang S S, Guddat L W, Duggleby R G . Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J Biol Chem, 2003,278:7639-7644. |
[51] | Petit C, Duhieu B, Boucansaud K, Délye C . Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus. Plant Sci, 2010,178:501-509. |
[52] | Scarabel L, Pernin F, Délye C . Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. Plant Sci, 2015,238:158-169. |
[53] | Yang Q, Deng W, Li X, Yu Q, Bai L, Zheng M . Target-site and non-target-site based resistance to the herbicide tribenuron- methyl in flixweed (Descurainia sophia L.). BMC Genomics, 2016,17:551-563 . |
[54] | Mei Y, Si C, Liu M, Qiu L, Zheng M . Investigation of resistance levels and mechanisms to nicosulfuron conferred by non-target- site mechanisms in large crabgrass (Digitaria sanguinalis L.) from China. Pestic Biochem Physiol, 2017,141:84-89. |
[55] | Zhao B, Fu D, Yu Y, Huang C, Yan K, Li P, Shafi J, Zhu H, Wei S, Ji M . Non-target-site resistance to ALS-inhibiting herbicides in a Sagittaria trifolia L. population. Pestic Biochem Physiol, 2017,140:79-84. |
[56] | Chen G, Xu H, Zhang T, Bai C, Dong L . Fenoxaprop-P-ethyl resistance conferred by cytochrome P450s and target site mutation in Alopecurus japonicus. Pest Manag Sci, 2018. doi: 10.1002/ps.4863. |
[57] | Tehranchian P, Nandula V, Jugulam M, Putta K, Jasieniuk M . Multiple resistance to glyphosate, paraquat and ACCase-inhibiting herbicides in Italian ryegrass populations from California: confirmation and mechanisms of resistance. Pest Manage Sci, 2017, doi: 10.1002/ps.4774. |
[58] | Oliveira M C, Gaines T A, Dayan F E, Patterson E L, Jhala A J, Knezevic S Z . Reversing resistance to tembotrione in an Amaranthus tuberculatus(var. rudis) population from Nebraska, USA with cytochrome P450 inhibitors. Pest Manag Sci, 2017, doi: 10.1002/ps.4697. |
[59] | Siminszky B, Corbin F T, Ward E R, Fleischmann T J, Dewey R E . Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc Natl Acad Sci USA, 1999,96:1750-1755. |
[60] | Saika H, Horita J, Taguchi-Shiobara F, Nonaka S, Nishizawa-Yokoi A, Iwakami S, Hori K, Matsumoto T, Tanaka T, Itoh T, Yano M, Kaku K, Shimizu T, Toki S . A novel rice cytochrome P450 gene, CYP72A31, confers tolerance to acetolactate synthase-inhibiting herbicides in rice and Arabidopsis. Plant Physiol, 2014,166:1232-1240. |
[61] | Yu Q, Powles S B . Resistance to AHAS inhibitor herbicides: current understanding. Pest Manag Sci, 2014,70:1340-1350. |
[62] | Pan L, Gao H, Xia W, Zhang T, Dong L . Establishing a herbicide-metabolizing enzyme library in Beckmannia syzigachne to identify genes associated with metabolic resistance. J Exp Bot, 2016,67:1745-1757. |
[63] | Burns E E, Keith B K, Refai M Y, Bothner B, Dyer W E . Proteomic and biochemical assays of glutathione-related proteins in susceptible and multiple herbicide resistant Avena fatua L. Pestic Biochem Physiol, 2017,140:69-78. |
[64] | Burns E E, Keith B K, Refai M Y, Bothner B, Dyer W E . Constitutive redox and phosphoproteome changes in multiple herbicide resistant Avena fatua L. are similar to those of systemic acquired resistance and systemic acquired acclimation. J Plant Physiol, 2018,220:105-114. |
[65] | Li Z, Liu Z B, Xing A, Moon B P, Koellhoffer J P, Huang L, Ward R T, Clifton E, Falco S C, Cigan A M . Cas9-guide RNA directed genome editing in soybean. Plant Physiol, 2015,169:960-970. |
[66] | Svitashev S, Young J K, Schwartz C, Gao H, Falco S C, Cigan A M . Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol, 2015,169:931-945. |
[67] | Komor A C, Kim Y B, Packer M S, Zuris J A, Liu D R . Programmable editing of a target base in genomic DNA without double stranded DNA cleavage. Nature, 2016,533:420-424. |
[68] | Chen Y, Wang Z, Ni H, Xu Y, Chen Q, Jiang L . CRISPR/Cas9- mediated base-editing system efficiently generates gain-of-function mutations in Arabidopsis. Sci China Life Sci, 2017,60:520-523. |
[69] | Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K . Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol, 2017,35:441-443. |
[70] | Li S, Li J, He Y, Xu M, Zhang J, Du W, Zhao Y, Xia L . Precise gene replacement in rice by RNA transcript-templated homologous recombination. Nat Biotechnol, 2019, doi: 10.1038/s41587-019-0065-7. |
[71] | Zhao L, Deng L, Zhang Q, Jing X, Ma M, Yi B, Wen J, Ma C Z, Tu J X, Fu T D, Shen J X . Autophagy contributes to sulfonylurea herbicide tolerance via GCN2-independent regulation of amino acid homeostasis. Autophagy, 2018,14:702-714. |
[72] | Zhao L, Jing X, Chen L, Liu Y J, Su Y N, Liu T T, Gao C B, Yi B, Wen J, Ma C Z, Tu J, Zou J, Fu T D, Shen J X . Tribenuron- methyl induces male sterility through anther-specific inhibition of acetolactate synthase leading to autophagic cell death. Mol Plant, 2015,8:1710-1724. |
[1] | LIU Jia-Xin, LAN Yu, XU Qian-Yu, LI Hong-Ye, ZHOU Xin-Yu, ZHAO Xuan, GAN Yi, LIU Hong-Bo, ZHENG Yue-Ping, ZHAN Yi-Hua, ZHANG Gang, ZHENG Zhi-Fu. Creation and identification of peanut germplasm tolerant to triazolopyrimidine herbicides [J]. Acta Agronomica Sinica, 2022, 48(4): 1027-1034. |
[2] | HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646. |
[3] | Qian-Nan CHEN,Ke WANG,Sha TANG,Li-Pu DU,Hui ZHI,Guan-Qing JIA,Bao-Hua ZHAO,Xing-Guo YE,Xian-Min DIAO. Use of Bar Gene for the Stable Transformation of Herbicide-resistant Foxtail Millet Plants [J]. Acta Agronomica Sinica, 2018, 44(10): 1423-1432. |
[4] | Fang-Quan WANG, Jie YANG, Fang-Jun FAN, Wen-Qi LI, Jun WANG, Yang XU, Jin-Yan ZHU, Yun-Yan FEI, Wei-Gong ZHONG. Development and Application of the Functional Marker for Imidazolinone Herbicides Resistant ALS Gene in Rice [J]. Acta Agronomica Sinica, 2018, 44(03): 324-331. |
[5] | HU Mao-Long, PU Hui-Ming, LONG Wei-Hua, GAO Jian-Qin, QI Cun-Kou, ZHANG Jie-Fu, CHEN Song. Enzymatic Characteristics of Acetolactate Synthase Mutant S638N in Brassica napus and Its Resistance to ALS Inhibitor Herbicides [J]. Acta Agron Sin, 2015, 41(09): 1353-1360. |
[6] | YU Cheng-Yu,HE Bei-Ru. Evaluation of Male-Sterility Induction Effect of Various Amino Acid Biosynthesis Inhibiting-Herbicides on Rapeseed (Brassica napus) [J]. Acta Agron Sin, 2014, 40(02): 264-272. |
[7] | HU Mao-Long,LONG Wei-Hua,GAO Jian-Qin,FU San-Xiong,CHEN Feng,ZHOU Xiao-Yin,PENG Qi,ZHANG Wei,PU Hui-Ming*,QI Cun-Kou,ZHANG Jie-Fu,CHEN Song. Development and Application of Allele-Specific PCR Markers for Imidazolinone-Resistant Gene BnALS1R in Brassica napus [J]. Acta Agron Sin, 2013, 39(10): 1711-1719. |
[8] | HUI Guo-Qiang, DU He-Wei, YANG Xiao-Gong, LIU Guang-Hui, WANG Zhen-Tong, ZHANG Yi-Rong, ZHENG Yan-Ping,YAN Jian-Bing, CHANG Ming-Tang, LI Jian-Sheng. Doubling Efficiency of Maize Haploids Treated by Different Herbicides [J]. Acta Agron Sin, 2012, 38(03): 416-422. |
[9] |
LI Xue-Mei;ZHANG Wei-Jia;WANG Yan;WANG Zhen-Ying;PENG Yong-Kang . Changes in Chloroplast Proteome of Chinese Cabbage Seedlings Induced by PSⅡInhibiting Herbicide Atrazine [J]. Acta Agron Sin, 2008, 34(02): 238-242. |
[10] | PENG Yong-Kang; ZOU Ling-Zhi; WANG Zhen-Ying; JIN Hong-Ying; FENG Zheng-Yong. The Effect of Triazine Herbicide Atrazine on the Chromosome Structure, Protein Content and Compositions in Oryza sativa L. [J]. Acta Agron Sin, 2006, 32(04): 497-502. |
[11] | ZHU Bi-Feng; ZHU You-Lin; WU Cheng-Gang; LIAO Zhao-Hui; LI Shu-Wei; LIU Zhu; PENG Ling; GUO Ke-Ting and LIU An-Ling. Identification of RAPD and SCAR Markers Linked to Herbicide Susceptible Lethality Gene (bel) in Rice [J]. Acta Agron Sin, 2006, 32(04): 618-624. |
[12] | Ge Yongfu; Qian Cunming; Zhou Chaofei; Chen Zhide; Bai Guihua. Inheritance of Sensitivity to Chlorotoluron in Wheat (T.aestivum) [J]. Acta Agron Sin, 1992, 18(03): 230-234. |
|