Welcome to Acta Agronomica Sinica,

Acta Agron Sin ›› 2015, Vol. 41 ›› Issue (09): 1353-1360.doi: 10.3724/SP.J.1006.2015.01353

• CROP GENETICS & BREEDING·GERMPLASM RESOURCES·MOLECULAR GENETICS • Previous Articles     Next Articles

Enzymatic Characteristics of Acetolactate Synthase Mutant S638N in Brassica napus and Its Resistance to ALS Inhibitor Herbicides

HU Mao-Long, PU Hui-Ming*, LONG Wei-Hua, GAO Jian-Qin, QI Cun-Kou, ZHANG Jie-Fu, CHEN Song   

  1. Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences / Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture / Nanjing Sub-center of National Center of Oil Crops Improvement, Nanjing 210014, China
  • Received:2015-01-05 Online:2015-09-12 Published:2015-09-12

Abstract: Acetolactate synthase (ALS) catalyses the first step in the synthesis of the branched-chain amino acids and is the target of several classes of herbicides. A BnALS1R gene from herbicide-resistant mutant line M9 in B. napus, was previously isolated and demonstrated to be resistant to the imidazolinone (IMI) herbicides. This research was to reveal the differences of enzymatic characteristics and its resistance to ALS inhibitor herbicides between the mutant S638N and the wild-type enzyme. The BnALS1R gene was constructed and expressed in Escherichia coli along with the wild-type. The target recombinant proteins with the predicted molecular weight (74 kD) were successively expressed in Escherichia coli and purified by SDS-PAGE. The enzymatic activity of the purified S638N and wild-type was then measured in enzyme reaction systems under different temperatures and pH values. Results showed that the S638N resembled the wild-type in their enzymatic activity, showing maximum activity at 37°C and pH 7.0, and no significant difference in the Km and Vmax between the S638N and wild-type. The activation of the S638N by cofactors (FAD, Mg2+ and thiamine diphosphate) was examined and generated similar results to that of the wild-type. The mutant enzyme was inactive when one of three cofactors was omitted. However, the S638N was more resistant to IMI herbicides than the wild-type in contrast to Su herbicides that inhibited the S638N as well as the wild-type. Therefore, the S638N has resistance specific to IMI herbicides with unalteration of the enzymatic reaction characteristics.

Key words: Rapeseed (Brassica napus L.), Imidazolinone herbicides, Acetolactate synthase, S638N, Herbicide-resistance

[1] McCourt J A, Duggleby R G. Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids. Amino Acids , 2006, 31: 173-210
[2] Tan S, Evans R R, Dahmer M L, Bijay K S, Dale L S. Imidazolinone-tolerant crops: history, current status and future. Pest Manag Sci , 2005, 61: 246-257
[3] McCourt J A, Pang S S, King-Scott J, Guddat L W, Duggleby R G. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci USA , 2006, 103: 569-573
[4] Chipman D M, Duggleby R G, Tittmann K. Mechanisms of acetohydroxyacid synthases. Curr Opin Chem Biol , 2005, 9: 475-481
[5] Chipman D, Barak Z, Schloss J V. Biosynthesis of 2-aceto-2- hydroxy acids: acetolactate synthases and acetohydroxyacid synthases. Biochim Biophys Acta , 1998, 1385: 401-419
[6] Duggleby R G. Domain relationships in thiamine diphosphate- dependent enzymes. Acc Chem Res , 2006, 39: 550-557
[7] Lee H, Sachin R, Neeraj K, Burkea I, Yenisha J P, Gilla K S, Wettsteina D V, Steven E U. Single nucleotide mutation in the barley acetohydroxy acid synthase (AHAS) gene confers resistance to imidazolinone herbicides. Proc Natl Acad Sci USA , 2011, 108: 8909-8913
[8] Carlos A S, Mariano B, Mariel E, Sherry R, Ascenzi W R. Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower. Theor Appl Genet , 2008, 118: 105-112
[9] Carlos A S, Mariano B. Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sun?ower. Theor Appl Genet , 2012, 124: 355-364
[10] Carlos A. S, Mariano B, Emiliano A, Brigitte W. Response to imazapyr and dominance relationships of two imidazolinone- tolerant alleles at the Ahasl1 locus of sun?ower. Theor Appl Genet , 2012, 124: 385-396
[11] Hattori J, Brown D, Mourad G, Labbe H, Ouellet T, Sunohara G, Rutledge R, King J, Miki B. An acetohydroxyacid synthase mutant reveals a single site involved in multiple herbicide resistance. Mol Gen Genet , 1995, 246: 419-425
[12] 胡茂龙, 浦惠明, 高建芹, 龙卫华, 戚存扣, 张洁夫, 陈松. 油菜乙酰乳酸合成酶抑制剂类除草剂抗性突变体M9的遗传和基因克隆. 中国农业科学, 2012, 45: 4326-4334 Hu M L, Pu H M, Gao J Q, Long W H, Qi C K, Zhang J F, Chen S. Inheritance and gene cloning of an ALS inhabiting herbicide-resistant mutant line M9 in Brassica napus . Sci Agric Sin , 2012, 45: 4326-4334 (in Chinese with English abstract)
[13] Walter K L, Strachan S D, Ferry N M, Albert H H, Castle L A, Sebastian S A. Molecular and phenotypic characterization of Als1 and Als2 mutations conferring tolerance to acetolactate synthase herbicides in soybean. Pest Manag Sci , 2014, 70: 1831-1839
[14] Ghio C, Ramos M L, Altieri E, Bulos M, Sala C A. Molecular characterization of Als1 , an acetohydroxyacid synthase mutation conferring resistance to sulfonylurea herbicides in soybean. Theor Appl Genet , 2013, 126: 2957-2968
[15] Li H, Li J, Zhao B, Wang J, Yi L, Liu C, Wu J, King G J, Liu K. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed ( Brassica napus ) for hybrid seed production using chemically induced male sterility. Theor Appl Genet , 2015, 128: 107-118
[16] Thompson C, Tar’an B. Genetic characterization of the acetohydroxyacid synthase (AHAS) gene responsible for resistance to imidazolinone in chickpea ( Cicer arietinum L.). Theor Appl Genet , 2014, 127: 1583-1591
[17] Li D, Barclay I, Jose K, Stefanova K, Appels R. A mutation at the Ala122 position of acetohydroxyacid synthase (AHAS) located on chromosome 6D of wheat: improved resistance to imidazolinone and a faster assay for marker assisted selection. Mol Breed , 2008, 22: 217-225
[18] Duggleby R G, McCourt J A, Guddat L W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol Biochem , 2008, 46: 309-324
[19] Ott K H, Kwagh J G, Stockton G W, Sidorov V, Kakefuda G. Rational molecular design and genetic engineering of herbicide resistant crops by structure modeling and site-directed mutagenesis of acetohydroxyacid synthase. J Mol Biol , 1996, 263: 359-368
[20] Bernasconi P, Woodworth A R, Rosen B A, Subramanian M V, Siehl D L. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetohydroxyacid synthase. J Biol Chem , 1995, 270: 17381-17385
[21] Subramanian M V, Hung H Y, Dias J M, Miner V W, Butler J H, Jachetta J J. Properties of mutant acetolactate synthases resistant to triazolopyrimidine sulfonanilide. Plant Physiol , 1990, 94: 239-244
[22] Chang A K, Duggleby R G. Herbicide-resistant forms of Arabidopsis thaliana acetohydroxyacid synthase: characterization of the catalytic properties and sensitivity to inhibitors of four defined mutants. Biochem J , 1998, 333: 765-777
[23] Lee Y T, Chang A K, Duggleby R G. Effect of mutagenesis at serine 653 of Arabidopsis thaliana acetohydroxyacid synthase on the sensitivity to imidazolinone and sulfonylurea herbicides. FEBS Lett , 1999, 452: 341-345
[24] Chang A K, Duggleby R G. Expression, purification and characterization of Arabidopsis thaliana acetohydroxyacid synthase. Biochem J , 1997, 327: 161-169
[25] 浦惠明, 高建芹, 龙卫华, 胡茂龙, 张洁夫, 陈松, 陈新军, 陈锋, 顾慧, 付三雄, 戚存扣. 油菜抗咪唑啉酮性状的遗传及其应用. 中国油料作物学报, 2011, 33: 15-19 Pu H M, Gao J Q, Long W H, Hu M L, Zhang J F, Chen S, Chen X J, Chen F, Gu H, Fu S X, Qi C K. Studies on inheritance of imidazolinones resistance in Brassica napus and its utilization. Chin J Oil Crop Sci , 2011, 33: 15-19 (in Chinese with English abstract)
[26] 胡茂龙, 孔令娜, 龙卫华, 高建芹, 浦惠明, 戚存扣, 张洁夫, 陈松. 油菜乙酰羟基酸合酶基因 BnAHAS1 的克隆及其重组蛋白质的原核表达. 江苏农业学报, 2014, 30: 986-991 Hu M L, Kong L N, Long W H, Gao J Q, Pu H M, Qi C K, Zhang J F, Chen S. Cloning of the BnAHAS1 gene from Brassica napus and prokaryotic expression of its recombinant protein in Escherichia coli . Jiangsu J Agric Sci , 2014, 30: 986-991 (in Chinese with English abstract)
[27] Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Ann Biochem , 1976, 72: 248-254
[28] Singh B K, Stidham M A, Shaner D L. Assay of acetohydroxyacid synthase. Ann Biochem , 1988, 171: 173-179
[29] Seefeldt S S, Jensen J E, Fuerst E P. Log-logistic analysis of herbicide dose response relationships. Weed Technol , 1995, 9: 218-227
[30] Esposito D, Chatterjee D K. Enhancement of soluble protein expression through the use of fusion tags. Curr Opin Biotech , 2006, 17: 353-358
[31] Waugh D S. Making the most of affinity tags. Trends Biotech , 2005, 23: 316-320
[32] Chong C K, Choi J D. Amino acid residues conferring herbicide tolerance in tobacco acetolactate synthase. Biochem Biophys Res Commun , 2000, 279: 462-467
[33] 高建芹, 浦惠明, 戚存扣, 张洁夫, 龙卫华, 胡茂龙, 陈松, 陈新军, 陈锋, 顾慧. 抗咪唑啉酮油菜种质的发现与鉴定. 植物遗传资源学报, 2010, 11: 369-373 Gao J Q, Pu H M, Qi C K, Zhang J F, Long W H, Hu M L, Chen S, Chen X J, Chen F, Gu H. Identification of imidazolidone- resistant oilseed rape mutant. J Plant Genet Resour , 2010, 11: 369-373 (in Chinese with English abstract)
[34] 胡茂龙, 龙卫华, 高建芹, 付三雄, 陈锋, 周晓婴, 彭琦, 张维, 浦惠明, 戚存扣, 张洁夫, 陈松. 油菜抗咪唑啉酮类除草剂基因 BnALS1R 等位基因特异PCR标记的开发与应用. 作物学报, 2013, 39: 1711-1719 Hu M L, Long W H, Gao J Q, Fu S X, Chen F, Zhou X Y, Peng Q, Zhang W, Pu H M, Qi C K, Zhang J F, Chen S. Development and application of allele-specific PCR marker for the imidazolinone-resistant gene BnALS1R in Brassica napus . Acta Agron Sin , 2013, 39: 1711-1719 (in Chinese with English abstract)
[1] HU Mao-Long, CHENG Li, GUO Yue, LONG Wei-Hua, GAO Jian-Qin, PU Hui-Ming, ZHANG Jie-Fu, CHEN Song. Development and application of the marker for imidazolinone-resistant gene in Brassica napus [J]. Acta Agronomica Sinica, 2020, 46(10): 1639-1646.
[2] Fang-Quan WANG, Jie YANG, Fang-Jun FAN, Wen-Qi LI, Jun WANG, Yang XU, Jin-Yan ZHU, Yun-Yan FEI, Wei-Gong ZHONG. Development and Application of the Functional Marker for Imidazolinone Herbicides Resistant ALS Gene in Rice [J]. Acta Agronomica Sinica, 2018, 44(03): 324-331.
[3] ZHANG Wen-Yu, ZHANG Wei-Xin, GE Dao-Kuo, CAO Hong-Xin, LIU Yan, XUAN Shou-Li, FU Kun-Ya, FENG Chun-Huan, CHEN Wei-Tao. Modeling of Biomass-Based Leaf Morphological Parameters on Main Stem for Rapeseed (Brassica napus L.) [J]. Acta Agron Sin, 2015, 41(09): 1435-1444.
[4] HU Mao-Long,LONG Wei-Hua,GAO Jian-Qin,FU San-Xiong,CHEN Feng,ZHOU Xiao-Yin,PENG Qi,ZHANG Wei,PU Hui-Ming*,QI Cun-Kou,ZHANG Jie-Fu,CHEN Song. Development and Application of Allele-Specific PCR Markers for Imidazolinone-Resistant Gene BnALS1R in Brassica napus [J]. Acta Agron Sin, 2013, 39(10): 1711-1719.
[5] YU Cheng-Yu; HU Sheng-Wu; ZHANG Chun-Hong; YU Yan-Jun; HE Pei-Ru. The Effect of Chemical Hybridizing Agent EXP on Oilseed Rape [J]. Acta Agron Sin, 2005, 31(11): 1455-1459.
[6] Shen Kang;Shen Zhen-guo;Xu Han-qing;Huang Qing-yuan. Study on Boron Nutrition and Seed Setting of Rapeseed [J]. Acta Agron Sin, 1993, 19(06): 539-545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!